Bài 4 trang 132 sgk đại số 11 - Bài 4. Tính các giới hạn sau:a) \(\underse... DeHocTot.com

Bài 4 trang 132 sgk đại số 11

Toán


Bài 4. Tính các giới hạn sau:

a) \(\underset{x\rightarrow 2}{lim}\) \(\frac{3x -5}{(x-2)^{2}}\);

b) \(\underset{x\rightarrow 1^{-}}{lim}\) \(\frac{2x -7}{x-1}\);

c) \(\underset{x\rightarrow 1^{+}}{lim}\) \(\frac{2x -7}{x-1}\).

Hướng dẫn giải:

a) Ta có \(\underset{x\rightarrow 2}{\lim} (x - 2)^2= 0\) và \((x - 2)^2> 0\) với \(∀x ≠ 2\) và \(\underset{x\rightarrow 2}{\lim} (3x - 5) = 3.2 - 5 = 1 > 0\).

Do đó \(\underset{x\rightarrow 2}{\lim}\) \(\frac{3x -5}{(x-2)^{2}} = +∞\).

b) Ta có \(\underset{x\rightarrow 1^{-}}{\lim} (x - 1)=0\) và \(x - 1 < 0\) với \(∀x < 1\) và \(\underset{x\rightarrow 1^{-}}{\lim} (2x - 7) = 2.1 - 7 = -5 <0\).

Do đó \(\underset{x\rightarrow 1^{-}}{\lim}\frac{2x -7}{x-1} = +∞\).

c) Ta có \(\underset{x\rightarrow 1^{+}}{\lim} (x - 1) = 0\) và \(x - 1 > 0\) với \(∀x > 1\) và \(\underset{x\rightarrow 1^{+}}{\lim} (2x - 7) = 2.1 - 7 = -5 < 0\).

Do đó \(\underset{x\rightarrow 1^{+}}{lim}\) \(\frac{2x -7}{x-1}= -∞\).



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay