Bài 34 trang 123 - Sách giáo khoa toán 7 tập 1 - Bài 34. Trên mỗi hình 98,99 có tam giác nà... DeHocTot.com

Bài 34 trang 123 - Sách giáo khoa toán 7 tập 1

Toán


Bài 34. Trên mỗi hình 98,99 có tam giác nào bằng nhau? Vì sao?

Giải:

Xem hình 98)

\(∆ABC\) và \(∆ABD\) có: 

+) \(\widehat{CAB}\)=\(\widehat{DAB}\) (gt)

=) \(AB\) là cạnh chung.

+) \(\widehat{ABC}\)=\(\widehat{ABD}\)(gt)

Suy ra \(∆ABC=∆ABD\) (g.c.g)

Xem hình 99)

Ta có:

\(\widehat{B_{1}}\)+\(\widehat{B_{2}}=180^0\)  (Hai góc kề bù).

\(\widehat{C _{1}}\)+ \(\widehat{C _{2}}=180^0\)  (Hai góc kề bù)

Mà \(\widehat{B_{2}}\)=\(\widehat{C _{2}}\)  (gt)  nên \(\widehat{B_{1}}\)=\(\widehat{C _{1}}\)

* \(∆ABD\) và \(∆ACE\) có:

+) \(\widehat{B_{1}}\)=\(\widehat{C _{1}}\) (cmt)

+) \(BD=EC\)  (gt)

+) \(\widehat{D }\) = \(\widehat{E }\)  (gt)

Suy ra \(∆ABD=∆ACE\)  (g.c.g)

\(DC=DB+BC\)

\(EB=EC+CB\)

Do đó: \(DC=EB\)

* \(∆ADC\) và \(∆AEB\) có:

+) \(\widehat{D }\)=\(\widehat{E }\)  (gt)

+) \(\widehat{C _{2}}\)=\(\widehat{B_{2}}\)  (gt)

+) \(DC=EB\)  (cmt)

Suy ra \(∆ADC=∆AEB\) (g.c.g)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


HỌC TỐT đồng hành cùng BúnTV giới thiệu
[Nhạc chế] - Bạn À | Hài tết 2020