Bài 40 trang 73 sgk toán lớp 7- tập 2 - 40. Cho tam giác ABC cân tại A. gọi G là tr... Dehoctot.com

Bài 40 trang 73 sgk toán lớp 7- tập 2

0 lượt xem | Toán


40. Cho tam giác ABC cân tại A. gọi G là trọng tâm, I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Chứng minh ba điểm A, G, I thẳng hàng

Hướng dẫn:

Gọi giao điểm của BG với AC là M;

CG với AB là N

Vì G là trọng tâm của ∆ ABC

nên BM, CN, là trung tuyến

Mặt khác ∆ABC cân tại A

Nên BM = CN 

Ta có GB = \(\frac{1}{2}\)BM; GC = \(\frac{2}{3}\)CN (t/c trọng tâm của tam giác)

Mà BM = CN nên GB = GC

Do đó: ∆AGB = ∆AGC (c.c.c)

=> \(\widehat{BAG}= \widehat{CAG}\)  => G thuộc phân giác của \(\widehat{BAC}\)

Mà ∆ABI = ∆ACI (c.c.c)

=> \(\widehat{BAI}= \widehat{CAI}\) => I thuộc phân giác của \(\widehat{BAC}\)

Vì G, I cùng thuộc phân giác của \(\widehat{BAC}\) nên A, G, I  thẳng hàng



Đã có app DeHocTot trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Nếu thấy hay, hãy động viên và chia sẻ nhé!