Bài 43 trang 125 - Sách giáo khoa toán 7 tập 1 - Bài 43. Cho góc xOy khác góc bẹt. Lấy các... Dehoctot.com

Bài 43 trang 125 - Sách giáo khoa toán 7 tập 1

17 lượt xem | Toán


Bài 43. Cho góc xOy khác góc bẹt. Lấy các điểm A,B thuộc tia Ox sao cho OA <OB.

Lấy các điểm C,D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC.

Chứng minh rằng:

a) AD = BC;

b) ∆EAB = ∆ECD;

c ) OE là tia phân giác của góc xOy.

 Giải

a) Xét ∆OAD và ∆OCB có:

+) OA = OC (gt)

+) \(\widehat{AOD}\) = \(\widehat{COB}\) (=\(\widehat{A}\))

+) OD = OB (gt)

\( \Rightarrow \) ∆OAD = ∆OCB (c.g.c)

Suy ra AD = BC (Hai cạnh tương ứng).

b) ∆OAD = ∆OCB (cmt)

Suy ra: \(\widehat{D_1}\) = \(\widehat{B_1}\); \(\widehat{A _{2}}\) = \(\widehat{ C _{2}}\)

Mặt khác:

\(\widehat {{A_1}} + \widehat {{A_2}} = {180^0}\) (Hai góc kề bù)

\(\widehat {{C_1}} + \widehat {{C_2}} = {180^0}\) (Hai góc kề bù)

Do đó \(\widehat {{A_1}} + \widehat {{A_2}}=\widehat {{C_1}} + \widehat {{C_2}}\)

Mà \(\widehat{A _{2}}\) = \(\widehat{ C _{2}}\) nên \(\widehat{A _{1}}\) = \(\widehat{ C _{1}}\)

AB = OB - OA                   (1)

CD = OD - OC                  (2)

OC = OA, OD = OB (gt)    (3)

Từ (1), (2) và (3) suy ra: AB = CD.

Xét ∆EAB và  ∆ECD có:

+) AB = CD (cmt)

+) \(\widehat{A _{1}}\) = \(\widehat{ C _{1}}\) (cmt)

+) \(\widehat{B_1}\) = \(\widehat{D_1}\) (cmt)

Suy ra ∆EAB =  ∆ECD (g.c.g)

c) ∆EAB =  ∆ECD (câu b) => EA = EC.

Xét ∆OAE và ∆OCE có:

+) OA=OC (gt)

+) EA=EC (cmt)

+) OE là cạnh chung

Suy ra ∆OAE = ∆OCE (c .c.c)

Suy ra: \(\widehat{ AOE}\) = \(\widehat{ C OE}\)

Vậy OE là tia phân giác của góc xOy.

Đã có app DeHocTot trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Nếu thấy hay, hãy động viên và chia sẻ nhé!