Bài 5 trang 8 sgk toán 7 tập 1 - Giả sử x = \(\frac{a}{m}\) ; y = \(\frac{b}{... Dehoctot.com

Bài 5 trang 8 sgk toán 7 tập 1

0 lượt xem | Toán


Giả sử x = \(\frac{a}{m}\) ; y = \(\frac{b}{m}\) ( a, b, m ∈ Z, b # 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = \(\frac{a + b}{2m}\) thì ta có x < z < y

Lời giải:

Theo đề bài ta có x = \(\frac{a}{m}\), y = \(\frac{b}{m}\) (  a, b, m ∈ Z, m > 0)

Vì x < y nên ta suy ra a< b

Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\); z = \(\frac{a + b}{2m}\)

Vì a < b => a + a < a +b => 2a < a + b

Do 2a< a +b nên x < z (1)

Vì a < b => a + b < b + b => a + b < 2b

Do a+b < 2b nên z < y   (2)

Từ (1) và (2) ta suy ra x < z< y

                                                                                                              



Đã có app DeHocTot trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Nếu thấy hay, hãy động viên và chia sẻ nhé!