Bài 52 trang 128 SGK Toán 7 tập 1 - ... Dehoctot.com

Bài 52 trang 128 SGK Toán 7 tập 1

0 lượt xem | Toán


Bài 52. Cho góc xOy có số đo \(120^0\), điểm A thuộc tia phân giác của góc đó. Kẻ AB vuông góc với Ox (B thuộc Ox), kẻ AC vuông góc với Oy (C thuộc Oy). Tam giác ABC là tam giác gì ? Vì sao?

Giải

Tam giác ACO vuông tại C

Tam giác ABO vuông tại B

Xét hai tam giác vuông ACO và ABO có:

+) \(\widehat{O_{1}}=\widehat{O_{2}}\) (Vì OA là tia phân giác góc xOy)

+) AO chung

Suy ra \(∆ACO=∆ABO\) (cạnh huyền-góc nhọn)

Suy ra \(AC=AB\) (hai cạnh tương ứng)

\(\widehat {{A_1}} = \widehat {{A_2}}\) (hai góc tương ứng)

\(\widehat {{O_1}} = {1 \over 2}\widehat {xOy} = {1 \over 2}{.120^0} = {60^0}\)  (Vì OA là tia phân giác góc xOy)

Áp dụng định lí tổng ba góc trong một tam giác vào \(\Delta OBA\) ta có:

\(\eqalign{
& \widehat {{O_1}} + \widehat B + \widehat {{A_1}} = {180^0} \cr
& \Rightarrow \widehat {{A_1}} = {180^0} - \widehat {{O_1}} - \widehat B = {180^0} - {60^0} - {90^0} = {30^0} \cr} \)

Do đó: \(\widehat {{A_1}} = \widehat {{A_2}} = {30^0}\)

Hay \(\widehat {BAC} = \widehat {{A_1}} + \widehat {{A_2}} = {60^0}\)

Vây \(∆ABC\) có \(AC=AB\) và \(\widehat {BAC}= {60^0}\) nên là tam giác đều



Đã có app DeHocTot trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Nếu thấy hay, hãy động viên và chia sẻ nhé!