Bài 63 trang 50 sgk toán 7 tập 2 - Cho đa thức: \(M(x) = 5{{\rm{x}}^3} + 2{{\rm{x}... DeHocTot.com

Bài 63 trang 50 sgk toán 7 tập 2

Toán


Cho đa thức: \(M(x) = 5{{\rm{x}}^3} + 2{{\rm{x}}^4} - {x^2} + 3{{\rm{x}}^2} - {x^3} - {x^4} + 1 - 4{{\rm{x}}^3}\)

a) Sắp xếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.

b) Tính M(1) và M(-1)

c) Chứng tỏ rằng đa thức trên không có nghiệm.

Hướng dẫn làm bài:

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

\(M\left( x \right) = 2{x^4} - {x^4} + 5{x^3} - {x^3} - 4{x^3} + 3{x^2} - {x^2} + 1\)

\( = {x^4} + 2{x^2} + 1\)

b) \(M\left( 1 \right) = {1^4} + {2.1^2} + 1 = 4\)

\(M\left( { - 1} \right) = {\left( { - 1} \right)^4} + 2.{\left( { - 1} \right)^2} + 1 = 4\)

c) Ta có: \(M\left( x \right) = {x^4} + 2{x^2} + 1\)

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0  với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


HỌC TỐT đồng hành cùng BúnTV giới thiệu
[Nhạc chế] - Bạn À | Hài tết 2020