Bài 64 trang 87 sgk toán 7 tập 2 - Gọi MH là đường cao của tam giác MNP. Ch... Dehoctot.com

Bài 64 trang 87 sgk toán 7 tập 2

20 lượt xem | Toán


Gọi MH là đường cao của tam giác MNP. Chứng minh rằng: Nếu MN < MP thì HN < HP  và  \(\widehat {NMH} < \widehat {PMH}\) (yêu cầu xét hai trường hợp: khi góc N nhọn và khi góc N tù).

Hướng dẫn làm bài:

 

+Nếu góc N nhọn (hình a)

∆MNP có  \(\hat N\) nhọn nên chân đường cao H kẻ từ M nằm giữa N và P.

Ta có hình chiếu của MN và MP lần lượt là HN và HP.

Từ giả thiết MN < MP => HN < HP (quan hệ giữa các đường xiên và hình chiếu).

∆MNP có MN < MP =>  \(\widehat {MPN} < \widehat {MNP}\) (quan hệ giữa cạnh và góc trong tam giác)

Vì  \(\widehat {NMH} + \widehat {MNH} = {90^0}\) (∆MNH vuông tại H)

 \(\widehat {MPH} + \widehat {PMH} = {90^0}$\)(∆MHP vuông tại H)

Vậy  \(\widehat {NMH} < \widehat {PMH}\)

+Nếu góc N tù (hình b)

∆MNP có  \(\hat N\) tù nên chân đường cao H ở ngoài cạnh NP và N ở giữa H và P

=>HN < HP.

Vì N ở giữa H và P nên tia MN ở giữa hai tia MH và MP. Từ đó suy ra  \(\widehat {HMN} < \widehat {HMP}\)

Đã có app DeHocTot trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Nếu thấy hay, hãy động viên và chia sẻ nhé!