Bài 65 trang 137 - Sách giáo khoa toán 7 tập 1 - Bài 65. Các tam giác ABC cân tại A(\(\wideha... Dehoctot.com

Bài 65 trang 137 - Sách giáo khoa toán 7 tập 1

18 lượt xem | Toán


Bài 65. Các tam giác ABC cân tại A(\(\widehat{A}\)<900). Vẽ BH ⊥ A (H thuộc AC), CK⊥ AB (K thuộc AB)

a) Chứng minh rằng AH=AK.

b) Gọi I là giao điểm của BH và CK. Chứng minh rằng tia AI là tia phân giác của góc A.

Giải:

a) Hai tam giác vuông ABH và  ACK có:

AB = AC(gt)

Góc A chung.

nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)

suy ra AH = AK.

b) Hai tam giác vuông AIK và AIH có:

AK = AH(cmt)

AI cạnh chung

Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)

Suy ra \(\widehat{IAK}\)=\(\widehat{IAH}\)

Vậy AI là tia phân giác của góc A.

Đã có app DeHocTot trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Nếu thấy hay, hãy động viên và chia sẻ nhé!