Bài 67 trang 87 sgk toán 7 tập 2 - Cho tam giác MNP với đường trung tuyến MR... Dehoctot.com

Bài 67 trang 87 sgk toán 7 tập 2

18 lượt xem | Toán


Cho tam giác MNP với đường trung tuyến MR và trọng tâm Q.

a)Tính tỉ số các diện tích của hai tam giác MPQ và RPQ.

b)Tính tỉ số các diện tích của hai tam giác MNQ và RNQ.

Tức các kết quả trên, hãy chứng minh các tam giác QMN, QNP, QPM có cùng diện tích.

Gợi ý: Hai tam giác ở mỗi câu a, b, c có chung đườn cao.

Hướng dẫn làm bài:

 

a) Vì Q là trọng tâm của ∆MNP nên điểm Q thuộc đường trung tuyến MR và  \({{MQ} \over {RQ}} = 2\).

Vì hai tam giác ∆MPQ và ∆RPQ có chung đường cao kẻ từ P nên :

\({{{S_{\Delta MPQ}}} \over {{S_{\Delta RPQ}}}} = {{MQ} \over {RQ}} = 2\) (1)

b) Chứng minh tương tự như câu (a) ta có :  

\({{{S_{\Delta MPQ}}} \over {{S_{\Delta RPQ}}}} = 2\left( 2 \right)\)

c) Hai tam giác ∆PQR và ∆QNR có chung đường cao kẻ từ Q và PR = RN nên S∆PQR = S∆QNR

Vì S∆PQR + S∆QNR = S∆PQN 

Nên S∆PQN = 2.S∆PQR = 2.S∆QNR (3)

Từ (1), (2), (3) => S∆QMN = S∆QNP = S∆QPM

Đã có app DeHocTot trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Nếu thấy hay, hãy động viên và chia sẻ nhé!