Bài 1 trang 38 SGK Đại số 10 - ... DeHocTot.com

Bài 1 trang 38 SGK Đại số 10

Toán


Bài 1) Tìm tập xác định của các hàm số sau:

a) \(y= \frac{3x-2}{2x+1};\)

b) \(y= \frac{x-1}{x^{2}+2x-3}\);

c) \(y= \sqrt{2x+1}-\sqrt{3-x}.\)

Giải:

a) Công thức \(\frac{3x-2}{2x+1}\) có nghĩa với \(x ∈ \mathbb R\) sao cho \(2x + 1 ≠ 0\Leftrightarrow x \ne  - {1 \over 2}\).

    Vậy tập xác định của hàm số \(y= \frac{3x-2}{2x+1}\) là:

                            

\(D = \left \{ x\in\mathbb R|x\neq \frac{-1}{2} \right \}\) 

Hay \(D=\mathbb R\setminus \left \{ \frac{-1}{2} \right \}.\)

b)

\({x^2} + 2x - 3 = 0 \Leftrightarrow \left[ \matrix{
x = - 3 \hfill \cr
x = 1 \hfill \cr} \right.\)

Vậy tập xác định của hàm số \(y= \frac{x-1}{x^{2}+2x-3}\) là: \(D = \left\{ {x \in\mathbb R|{x^2} + 2x - 3 \ne 0} \right\}\)

Hay \(D =\mathbb R\backslash \left\{ { - 3;1} \right\}\)

c) \(\sqrt{2x+1}\) có nghĩa với \(x ∈\mathbb R\) sao cho \(2x + 1 ≥ 0\)

    \(\sqrt{3-x}\) có nghĩa với  \(x ∈\mathbb R\) sao cho \(3 - x ≥ 0\)

Vậy tập xác định của hàm số \(y= \sqrt{2x+1}-\sqrt{3-x}\) là:

            \(D = D_1∩ D_2\), trong đó:

            \({D_1} = \left\{ {x \in\mathbb R|2x + 1 \ge 0} \right\}= \left [ \frac{-1}{2}; +\infty \right )\)

            \({D_2} = \left\{ {x \in R|3 - x \ge 0} \right\}=\left ( -\infty ;3 \right ]\)

\(\Rightarrow D= \left [ \frac{-1}{2};+\infty \right )\cap \left ( -\infty ;3 \right ]= \left [ \frac{-1}{2};3 \right ].\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay