Bài 1 trang 88 sgk hình học 10 - ... DeHocTot.com

Bài 1 trang 88 sgk hình học 10

Toán


Bài 1. Xác đinh độ dài các trục, tọa độ tiêu điểm , tọa độ các đỉnh và vẽ các elip có phương trình sau:

a) \(\frac{x^{2}}{25} + \frac{y^{2}}{9}= 1\)

b) \(4x^2+ 9y^2= 1\)

c) \(4x^2+ 9y^2= 36\)

Giải

a) Ta có: \(a^2= 25 \Rightarrow a = 5\) độ dài trục lớn \(2a = 10\) 

               \( b^2= 9 \Rightarrow  b = 3\) độ dài trục nhỏ \(2a = 6\) 

               \(c^2= a^2– b^2= 25 - 9 = 16  \Rightarrow c = 4\)

Vậy hai tiêu điểm là : \(F_1(-4 ; 0)\) và \(F_2(4 ; 0)\)

Tọa độ các đỉnh    \(A_1(-5; 0), A_2(5; 0),  B_1(0; -3),  B_2(0; 3)\).

b)

 \(4x^2+ 9y^2= 1\Leftrightarrow \frac{x^{2}}{\frac{1}{4}} + \frac{y^{2}}{\frac{1}{9}} = 1\)

  \(a^2  =\frac{1}{4}\Rightarrow a = \frac{1}{2}\)  \(\Rightarrow\) độ dài trục lớn \(2a = 1\)

  \(b^2= \frac{1}{9}\Rightarrow b = \frac{1}{3}\) \(\Rightarrow\)  độ dài trục nhỏ \(2b = \frac{2}{3}\)

   \(c^2= a^2– b^2= \frac{1}{}4- \frac{1}{9} =  \frac{5}{36}\) \(\Rightarrow c = \frac{\sqrt{5}}{6}\)

 \(F_1(-\frac{\sqrt{5}}{6} ; 0)\) và \(F_2(\frac{\sqrt{5}}{6} ; 0)\)

  \(A_1(-\frac{1}{2}; 0), A_2(\frac{1}{2}; 0)\), \(B_1(0; -\frac{1}{3} ), B_2(0; \frac{1}{3} )\).

c) Chia \(2\) vế của phương trình cho \(36\) ta được :

\(\frac{x^{2}}{9}+ \frac{y^{2}}{4}= 1\)

Từ đây suy ra: \(2a = 6,     2b = 4,    c = \sqrt5\)

Suy ra \(F_1(-\sqrt5 ; 0)\) và \(F_2(\sqrt5 ; 0)\)

 \(A_1(-3; 0), A_2(3; 0),  B_1(0; -2),  B_2(0; 2)\).



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay