Bài 2 trang 12 sgk hình học lớp 10 - ... DeHocTot.com

Bài 2 trang 12 sgk hình học lớp 10

Toán


Bài 2. Cho hình bình hành \(ABCD\) và một điểm M tùy ý. Chứng minh rằng \(\overrightarrow{MA}\) + \(\overrightarrow{MC}\) = \(\overrightarrow{MB}\) + \(\overrightarrow{MD}\).

Giải

Cách 1: Áp dụng quy tắc 3 điểm đối với phép cộng vectơ:

\(\overrightarrow{MA}\) = \(\overrightarrow{MB}\) + \(\overrightarrow{BA}\)

\(\overrightarrow{MC}\) = \(\overrightarrow{MD}\) + \(\overrightarrow{DC}\)

\(\Rightarrow\) \(\overrightarrow{MA}\) + \(\overrightarrow{MC}\) = \(\overrightarrow{MB}\) +\(\overrightarrow{MD}\)+ (\(\overrightarrow{BA}\) +\(\overrightarrow{DC}\))

\(ABCD\) là hình bình hành nên hai vec tơ \(\overrightarrow{BA}\) và \(\overrightarrow{DC}\) là hai vec tơ đối nhau nên:

\(\overrightarrow{BA}\) +\(\overrightarrow{DC}\) = \(\overrightarrow{0}\)

Suy ra  \(\overrightarrow{MA}\) + \(\overrightarrow{MC}\) = \(\overrightarrow{MB}\) + \(\overrightarrow{MD}\).

Cách 2. Áp dụng quy tắc 3 điểm đối với phép trừ vec tơ

\(\overrightarrow{AB}\)= \(\overrightarrow{MB}\) - \(\overrightarrow{MA}\)

\(\overrightarrow{CD}\) = \(\overrightarrow{MD}\) - \(\overrightarrow{MC}\)

\(\Rightarrow\) \(\overrightarrow{AB}\) + \(\overrightarrow{CD}\) =  (\(\overrightarrow{MB}\) +\(\overrightarrow{MD}\)) - (\(\overrightarrow{MA}\) +\(\overrightarrow{MC}\)).

\(ABCD\) là hình bình hành nên \(\overrightarrow{AB}\) và \(\overrightarrow{CD}\) là hai vec tơ đối nhau, cho ta:

          \(\overrightarrow{AB}\) +\(\overrightarrow{CD}\) = \(\overrightarrow{0}\)

Suy ra:  \(\overrightarrow{MA}\) + \(\overrightarrow{MC}\) = \(\overrightarrow{MB}\) + \(\overrightarrow{MD}\).



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay