Bài 2 trang 62 sgk đại số 10 - ... DeHocTot.com

Bài 2 trang 62 sgk đại số 10

Toán


Bài 2. Giải và biện luận các phương trình sau theo tham số \(m\)

a) \(m(x - 2) = 3x + 1\);

b) \(m^2x + 6 = 4x + 3m\);

c) \((2m + 1)x – 2m = 3x – 2\).

Giải

a) \(m(x - 2) = 3x + 1\)

\(⇔ (m – 3)x = 2m + 1\).

+) Nếu \(m ≠ 3\), phương trình có nghiệm duy nhất \(x = \frac{2m +1}{m-3}\).

+) Nếu \(m = 3\) phương trình trở thành \(0.x = 7\).

    Phương trình vô nghiệm.

b) \(m^2x + 6 = 4x + 3m\)

\(⇔ (m^2– 4)x = 3m – 6\).

+) Nếu \(m^2– 4 ≠ 0 ⇔ m ≠ ± 2\), phương trình có nghiệm \(x = \frac{3m - 6}{m^{2}-4}=\frac{3}{m+2}\).

+) Nếu \(m = 2,\) phương trình trở thành \(0.x = 0\) đúng với mọi \(x ∈ \mathbb R\).

    Phương trình có vô số nghiêm.

+) Nếu \(m = -2\), phương trình trở thành \(0.x = -12\), phương trình vô nghiệm.

c) \((2m + 1)x – 2m = 3x – 2\)

\(⇔ 2(m – 1)x = 2(m-1)\).

+) Nếu \(m ≠ 1\), phương trình có nghiệm duy nhất \(x = 1\).

+) Nếu \(m = 1\), phương trình trở thành \(0.x=0\) đúng với mọi \(x ∈\mathbb R\).

    Phương trình có vô số nghiệm.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay