Bài 3 trang 45 sgk hình học 10 - ... DeHocTot.com

Bài 3 trang 45 sgk hình học 10

Toán


Bài 3. Cho nửa đường tròn tâm \(O\) có  đường kính \(AB = 2R\). Gọi \(M\) và \(N\) là hai điểm thuộc nửa đường tròn sao cho hai dây cung \(AM\) và \(BN\) cắt nhau tại \(I\).

a) Chứng minh \(\overrightarrow {AI} .\overrightarrow {AM}  = \overrightarrow {AI} .\overrightarrow {AB}\) và \(\overrightarrow {BI} .\overrightarrow {BN}  = \overrightarrow {BI} .\overrightarrow {BA}\);

B) Hãy dùng câu a) để tính \(\overrightarrow {AI} .\overrightarrow {AM}  + \overrightarrow {BI} .\overrightarrow {BN}\) theo \(R\)

Giải

Ta có :  \(\left( {\overrightarrow {AI} .\overrightarrow {AB} } \right) = \overrightarrow {AI} \left( {\overrightarrow {AM}  + \overrightarrow {MB} } \right) = \overrightarrow {AI} .\overrightarrow {AM}  + \overrightarrow {AI} .\overrightarrow {MB} \)

Mặt khác: \(\overrightarrow {AI}  \bot \overrightarrow {MB} \) nên \(\overrightarrow {AI} .\overrightarrow {MB}  = 0\) 

Từ đó: \(\overrightarrow {AI} .\overrightarrow {AM}  = \overrightarrow {AI} .\overrightarrow {AB} \)

Ta có: \(\overrightarrow {BI} .\overrightarrow {BA}  = \overrightarrow {BI} \left( {\overrightarrow {BN}  + \overrightarrow {NA} } \right) = \overrightarrow {BI} .\overrightarrow {BN}  + \overrightarrow {BI} .\overrightarrow {NA} \)

Mặt khác: \(\overrightarrow {BI}  \bot \overrightarrow {NA} \) nên \(\overrightarrow {BI} .\overrightarrow {NA}  = 0\)  

Từ đó: \(\overrightarrow {BI} .\overrightarrow {BN}  = \overrightarrow {BI} .\overrightarrow {BA} \)

b)  

\(\eqalign{
& \overrightarrow {AI} .\overrightarrow {AM} + \overrightarrow {BI} .\overrightarrow {BN} = \overrightarrow {AI} .\overrightarrow {AB} + \overrightarrow {BI} .\overrightarrow {BA} \cr
& = \overrightarrow {AI} .\overrightarrow {AB} - \overrightarrow {BI} .\overrightarrow {AB} = \overrightarrow {AB} \left( {\overrightarrow {AI} - \overrightarrow {BI} } \right) \cr
& = \overrightarrow {AB} .\overrightarrow {AB} = {\overrightarrow {AB} ^2} = 4{{\rm{R}}^2} \cr} \)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay