Bài 3 trang 62 sgk đại số 10 - Bài 3. Có hai rổ quýt chứa số quýt bằn... DeHocTot.com

Bài 3 trang 62 sgk đại số 10

Toán


Bài 3. Có hai rổ quýt chứa số quýt bằng nhau. Nếu lấy \(30\) quả ở rổ thứ nhất đưa sang rổ thứ hai thì số quả ở rổ thứ hai bằng \(\frac{1}{3}\) của bình phương số quả còn lại ở rổ thứ nhất. Hỏi số quả quýt ở mỗi rổ lúc ban đầu là bao nhiêu ?

Giải

Gọi \(x\) là số quýt chứa trong một rổ lúc đầu. Điều kiện \(x\) nguyên, \(x > 30\).

Lấy \(30\) quả ở rổ thứ nhất đưa sang rổ thứ hai nên số quýt trong rổ thứ nhât còn \(x-30\), số quýt trong rổ thứ hai là: \(x+30\)

Theo đầu bài lấy \(30\) quả ở rổ thứ nhất đưa sang rổ thứ hai thì số quả ở rổ thứ hai bằng \(\frac{1}{3}\) của bình phương số quả còn lại ở rổ thứ nhất nên ta có phương trình:

\(\frac{1}{3} (x – 30)^2= x + 30 ⇔ x^2- 63x + 810 = 0\)                                

\( \Leftrightarrow \left[ \matrix{
x = 45 \text{( thỏa mãn )}\hfill \cr
x = 18  \text{( loại )}\hfill \cr} \right.\)

Vậy số quýt ở mỗi rổ lúc đầu là \(45\) quả.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay