Bài 3 trang 7 sgk hình học lớp 10 - Bài 3. Cho tứ giác \(ABCD\). Chứng minh rằ... DeHocTot.com

Bài 3 trang 7 sgk hình học lớp 10

Toán


Bài 3. Cho tứ giác \(ABCD\). Chứng minh rằng tứ giác đó là hình bình hành khi và chỉ khi \(\overrightarrow{AB}\) = \(\overrightarrow{DC}\).

Giải

Ta chứng minh hai mệnh đề:

*) Khi \(\overrightarrow{AB}\) = \(\overrightarrow{DC}\) thì \(ABCD\) là hình bình hành.

Thật vậy, theo định nghĩa của vec tơ bằng nhau thì:

\(\overrightarrow{AB}\) = \(\overrightarrow{DC}\)  ⇔ \(\left | \overrightarrow{AB} \right |\) = \(\left | \overrightarrow{DC} \right |\) và \(\overrightarrow{AB}\) và \(\overrightarrow{DC}\) cùng hướng.

 \(\overrightarrow{AB}\) và \(\overrightarrow{DC}\) cùng hướng suy ra \(\overrightarrow{AB}\) và \(\overrightarrow{DC}\) cùng phương, suy ra giá của chúng song song với nhau,

hay \(AB // DC\)                          (1)

Ta lại có  \(\left | \overrightarrow{AB} \right |\) = \(\left | \overrightarrow{DC} \right |\) suy ra \(AB = DC\)   (2)

Từ (1) và (2), theo dấu hiệu nhận biết hình bình hành, tứ giác \(ABCD\) có một cặp cạnh song song và bằng nhau nên nó là hình bình hành. 

*) Khi \(ABCD\) là hình bình hành thì \(\overrightarrow{AB}\) = \(\overrightarrow{CD}\)

  Khi \(ABCD\) là hình bình hành thì \(AB // CD\). Dễ thấy, từ đây ta suy ra hai vec tơ \(\overrightarrow{AB}\) và \(\overrightarrow{CD}\) cùng hướng     (3)

Mặt khác \(AB = CD\) suy ra \(\left | \overrightarrow{AB} \right |\) = \(\left | \overrightarrow{CD} \right |\)          (4)

Từ (3) và (4) suy ra  \(\overrightarrow{AB}\) = \(\overrightarrow{CD}\).



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay