Bài 3 trang 83 sgk hình học 10 - Bài 3.  Lập phương trình đường tròn đ... DeHocTot.com

Bài 3 trang 83 sgk hình học 10

Toán


Bài 3.  Lập phương trình đường tròn đi qua ba điểm:

 a) \(A(1; 2); B(5; 2); C(1; -3)\)

b) \(M(-2; 4); N(5; 5); P(6; -2)\)

Giải

Sử dụng phương trình đường tròn có dạng:  \(x^2+y^2-2 ax – 2by +c = 0\) 

a) Đường tròn đi qua điểm \(A(1; 2)\) nên ta có:

\(1^2+ 2^2– 2a -4b + c = 0   \Leftrightarrow   2a + 4b – c = 5\)

Đường tròn đi qua điểm \(B(5; 2)\) nên ta có:

\(5^2+ 2^2– 10a -4b + c = 0 \Leftrightarrow    10a + 4b – c = 29\)

Đường tròn đi qua điểm \(C(1; -3)\) nên ta có:

\(1^2+ (-3)^2 – 2a + 6b + c = 0   \Leftrightarrow     2a - 6b – c = 10\)

Để tìm \(a, b, c\) ta giải hệ: \(\left\{\begin{matrix} 2a + 4b- c = 5 (1) & & \\ 10a +4b - c= 29 (2) & & \\ 2a- 6b -c =10 (3) & & \end{matrix}\right.\)

Giải hệ ta được:  \(\left\{ \matrix{
a = 3 \hfill \cr
b = - 0,5 \hfill \cr
c = - 1 \hfill \cr} \right.\)

Phương trình đường tròn cần tìm là: \({{x^2} + {\rm{ }}{y^2} - {\rm{ }}6x{\rm{ }} + {\rm{ }}y{\rm{ }} - {\rm{ }}1{\rm{ }} = {\rm{ }}0} \)

b) Đường tròn đi qua điểm \(M(-2; 4)\) nên ta có:

\((-2)^2+ 4^2+4a -8b + c = 0   \Leftrightarrow   4a - 8b + c = -20\)

Đường tròn đi qua điểm \(N(5; 5)\) nên ta có:

\(5^2+ 5^2– 10a -10b + c = 0 \Leftrightarrow    10a +10b – c = 50\)

Đường tròn đi qua điểm \(P(6; -2)\) nên ta có:

\(6^2+ (-2)^2 – 12a + 4b + c = 0   \Leftrightarrow     12a - 4b – c = 40\)

Ta có hệ phương trình: 

$$\left\{ \matrix{
4a - 8b + c = - 20 \hfill \cr
10a + 10b - c = 50 \hfill \cr
12a - 4b - c = 40 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a = 2 \hfill \cr
b = 1 \hfill \cr
c = - 20 \hfill \cr} \right.$$

Phương trình đường tròn đi qua ba điểm \(M(-2; 4); N(5; 5); P(6; -2)\) là:

\(x^2+ y^2- 4x – 2y - 20 = 0\) 



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay