Bài 3 trang 88 sgk đại số 10 - Bài 3. Giải thích vì sao các cặp bất ph... DeHocTot.com

Bài 3 trang 88 sgk đại số 10

Toán


Bài 3. Giải thích vì sao các cặp bất phương trình sau tương đương?

a) \(- 4x + 1 > 0\) và \(4x - 1 <0\);

b) \(2x^2+5 ≤ 2x – 1\) và \(2x^2– 2x + 6 ≤ 0\);

c) \(x + 1 > 0\) và \(x + 1 + \frac{1}{x^{2}+1}>\frac{1}{x^{2}+1};\)

d) \(\sqrt{x-1} ≥ x\) và \((2x +1)\sqrt{x-1} ≥ x(2x + 1)\).

Giải

a) Tương đương. Vì nhân hai vế bất phương trình thứ nhất với \(-1\) và đổi chiều bất phương trình thì được bất phương trình thứ 2.

b) Chuyển vế các hạng tử vế phải sang vế trái ở bất phương trình thứ nhất thì được bất phương trình thứ hai tương đương.

c) Tương đương. Vì cộng hai vế bất phương trình thứ nhất với \(\frac{1}{x^{2}+1} > 0\) với mọi \(x\) ta được bất phương trình thứ 3.

d) Điều kiện xác định bất phương trình thứ nhất: \(D =[1;+\infty)\).

\(2x + 1 > 0 , ∀x ∈ D\).

Nhân hai vế bất phương trình thứ nhất với \((2x + 1) \) ta được phương trình thứ hai. Vậy hai bất phương trình tương đương.  



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay