Bài 4 trang 39 sgk đại số 10 - Bài 4) Xét tính chẵn lẻ của hàm số: a... DeHocTot.com

Bài 4 trang 39 sgk đại số 10

Toán


Bài 4) Xét tính chẵn lẻ của hàm số: 

a) \(y = |x|\);                                      b) \(y = (x + 2)^2\)     

c) \(y = x^3 + x\) ;                              d) \(y = x^2 + x + 1\).

Giải

a) Tập xác định của \(y = f(x) = |x|\) là \(D = \mathbb R\).

       \(∀x ∈\mathbb R \Rightarrow -x ∈\mathbb R\)  

       \(f(- x) = |- x| = |x| = f(x)\)

    Vậy hàm số \(y = |x|\) là hàm số chẵn.

b) Tập xác định của \(y = f(x) = (x + 2)^2\) là \(\mathbb R\).

        \(\forall x ∈\mathbb R \Rightarrow-x ∈\mathbb R\)   

       \( f(- x) = (- x + 2)^2 = x^2– 4x + 4 ≠ f(x)\)

       \(f(- x) ≠ - f(x) = - x^2 – 4x - 4\) 

 Vậy hàm số \(y = (x + 2)^2\)  không chẵn, không lẻ.

c) Tập xác định: \(D =\mathbb R\), \(\forall x ∈ D \Rightarrow  -x ∈ D\)

           \(f(– x) = (– x^3) + (– x) = - (x^3+ x) = – f(x)\)

     Vậy hàm số đã cho là hàm số lẻ.

d) Tập xác định: \(D=\mathbb R\), \(\forall x\in D \Rightarrow -x\in D\)

        \(f(-x)=(-x)^2-x+1=x^2-x+1\ne f(x)\)

     \(f(-x)=(-x)^2-x+1\ne -f(x)=-x^2-x-1\) 

Vậy hàm số không chẵn cũng không lẻ.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay