Bài 4 trang 45 sgk hình học 10 - Bài 4 Trên mặt phẳng \(Oxy\), cho hai điể... DeHocTot.com

Bài 4 trang 45 sgk hình học 10

Toán


Bài 4 Trên mặt phẳng \(Oxy\), cho hai điểm \(A(1; 3), B(4;2)\)

a) Tìm tọa độ điểm \(D\) nằm trên trục \(Ox\) sao cho \(DA = DB\);

b) Tính chu vi tam giác \(OAB\);

c) Chứng tỏ rằng \(OA\) vuông góc với \(AB\) và từ đó tính diện tích tam giác \(OAB\)

Giải

a) \(D\) nằm trên trục \(Ox\) nên tọa độ của \(D\) là \((x; 0)\).

 Ta có : 

\(\eqalign{
& DA = DB \cr
& \Leftrightarrow D{A^2} = D{B^2} \cr
& \Leftrightarrow {(1 - x)^2} + {3^2} = {(4 - x)^2} + {2^2} \cr
& \Leftrightarrow 1 - 2x + {x^2} + 9 = 16 - 8x + {x^2} + 4 \cr
& \Leftrightarrow 6x = 10 \cr
& \Leftrightarrow x = {5 \over 3} \cr
& \Rightarrow D\left( {{5 \over 3};0} \right) \cr} \)

b) 

\(\eqalign{
& O{A^2} = {1^2} + {3^3} = 10 \Rightarrow OA = \sqrt {10} \cr
& O{B^2} = {4^2} + {2^2} = 20 \Rightarrow OB = 2\sqrt 5 \cr
& A{B^2} = {(4 - 1)^2} + {(2 - 3)^2} = 10 \Rightarrow AB = \sqrt {10} \cr} \)

Chu vi tam giác \(OAB\) là: \(\sqrt {10}  + 2\sqrt 5  + \sqrt {10} \)

c) Ta có \(\vec{OA}= (1; 3)\)

            \(\vec{AB} = (3; -1)\)

\(\vec{OA} .\vec{AB} = 1.3 + 3.(-1) = 0 \Rightarrow \vec{OA}\) ⊥ \(\vec{AB}\) 

\({S_{OAB}}=\frac{1}{2}|\vec{OA}| .|\vec{AB}| =5\) (đvdt)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay