Bài 7 trang 27 sgk hình học lớp 10 - Bài 7. Các điểm \(A'(-4; 1), B'(2;4), C'(2, -... DeHocTot.com

Bài 7 trang 27 sgk hình học lớp 10

Toán


Bài 7. Các điểm \(A'(-4; 1), B'(2;4), C'(2, -2)\) lần lượt là trung điểm của các cạnh \(BC, CA\) và \(AB\) của tam giác \(ABC\). Tính tọa độ đỉnh của tam giác \(ABC\). Chứng minh rằng trọng tâm tam giác \(ABC\) và \(A'B'C'\) trùng nhau.

Giải


Giả sử \(A({x_A};{y_A}),B({x_B};{y_B}),C({x_C};{y_C})\)

\(A'\) là trung điểm của cạnh \(BC\) nên \(-4 = \frac{1}{2} (x_B+ x_C)\)

\(\Rightarrow {x_B} + {x_C} =  - 8\)                       (1)

Tương tự ta có \({x_A} + {x_C} = 4\)       (2)

                       \({x_B} + {x_A} = 4\)         (3)  

Giải hệ (1), (2) và (3) ta được:

       \(\left\{ \matrix{
{x_A} = 8 \hfill \cr
{x_B} = - 4 \hfill \cr
x{}_C = - 4 \hfill \cr} \right.\)

Tương tự ta tính được:

      \(\left\{ \matrix{
{y_A} = 1 \hfill \cr
{y_B} = - 5 \hfill \cr
y{}_C = 7 \hfill \cr} \right.\)

Gọi \(G({x_G};y{}_G)\) là trọng tâm của tam giác \(ABC\)

Khi đó ta có:

$$\left\{ \matrix{
{x_G} = {{{x_A} + {x_B} + {x_C}} \over 3} = {{8 - 4 - 4} \over 3} = 0 \hfill \cr
{y_G} = {{{y_A} + {y_B} + y{}_C} \over 3} = {{1 - 5 + 7} \over 3} = {1} \hfill \cr} \right.$$ 

Vậy \(G(0;1)\)  (*)

Gọi \(G'({x_{G'}};y{}_{G'})\) là trong tâm của tam giác \(A'B'C'\)

Khi đó ta có:

$$\left\{ \matrix{
{x_{G'}} = {{{x_{A'}} + {x_{B'}} + {x_{C'}}} \over 3} = {{ - 4 + 2 + 2} \over 3} = 0 \hfill \cr
{y_{G'}} = {{{y_{A'}} + {y_{B'}} + y{}_{C'}} \over 3} = {{1 + 4 - 2} \over 3} = 1 \hfill \cr} \right.$$

Vậy \(G'(0;1)\)  (2*)

Từ (*) và (2*) ta thấy \(G \equiv G'\)

Vậy trọng tâm tam giác \(ABC\) và \(A'B'C'\) trùng nhau.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay