Bài 9 trang 17 sgk hình học lớp 10 - Bài 9. Cho tam giác đều \(ABC\) có trọng t... DeHocTot.com

Bài 9 trang 17 sgk hình học lớp 10

Toán


Bài 9. Cho tam giác đều \(ABC\) có trọng tâm \(O\) và \(M\) là một điểm tùy ý trong tam giác. Gọi \(D,E,F\) lần lượt là chân đường vuông góc hạ từ \(M\) đến \(BC, AC, AB\). Chứng minh rằng:

          \(\overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = {3 \over 2}\overrightarrow {MO} \)

Giải

Qua M kẻ các đường thẳng song song với các cạnh của tam giác

A1B1 // AB;  A2C2 // AC;   B2C1 // BC.

Dễ thấy các tam giác MB1C2; MA1C1;MA2B2 đều là các tam giác đều. Ta lại có MD B1C2 nên MD cũng là trung điểm thuộc cạnh B1Ccủa tam giác MB1C2

Ta có 2 = 

Tương tự: 2 = 

               2 = +

=> 2( ++) = (+) + ( + ) + (+)

Tứ giác là hình bình hành nên

            = 

Tương tự: + = 

                 + = 

=> 2( ++) = ++

vì O là trọng tâm bất kì của tam giác và M là một điểm bất kì nên

 ++ = 3.

Cuối cùng ta có: 

2( ++) = 3;

=>  ++ = 



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay