Bài 9 trang 59 sgk hình học 10 - Bài 9. Cho hình bình hành \(ABCD\) có \(AB = ... DeHocTot.com

Bài 9 trang 59 sgk hình học 10

Toán


Bài 9. Cho hình bình hành \(ABCD\) có \(AB = a, BC = b ,BD = m\), và \(AC = n\). Chứng minh rằng :

$${m^2} + {n^2} = 2({a^2} + {b^2})$$

Giải

Áp dụng định lí về đường trung tuyến:

\(OA^2 =\frac{AD^{2}+AB ^{2}}{2} - \frac{BD^{2}}{4}\)

Thay \(OA = \frac{n}{2}, AB = a\)

\(AD = BC = b\) và \(BD = m\)

\({\left( {{n \over 2}} \right)^2} = {{{b^2} + {a^2}} \over 2} - {{{m^2}} \over 4} \Rightarrow {n^2} = 2{b^2} + 2{a^2} - {m^2} \)

\(\Rightarrow {m^2} + {n^2} = 2({a^2} + {b^2})\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay