Câu 2 trang 155 SGK Đại số 10 - Bài 2. Nêu định nghĩa của \(\tan α, \cot ... DeHocTot.com

Câu 2 trang 155 SGK Đại số 10

Toán


Bài 2. Nêu định nghĩa của \(\tan α, \cot α\) và giải thích vì sao ta có:

\(\tan(α+kπ) = \tanα; k ∈\mathbb Z\)

\(\cot(α+kπ) = \cotα; k ∈\mathbb Z\)

Trả lời:

 \(\tan \alpha  = {{\sin \alpha } \over {\cos \alpha }},\cot \alpha  = {{{\rm{cos}}\alpha } \over {\sin \alpha }}\)

Suy ra \(\tan (\alpha  + k\pi ) = {{\sin (\alpha  + k\pi )} \over {\cos (\alpha  + k\pi )}}\)

+) Nếu \(k\) chẵn

\(\sin(α+kπ) = \sin α\)

\(\cos(α+kπ) = \cos α\)

+) Nếu \(k\) lẻ

\(\sin(α+kπ) = - \sin α\)

\(\cos(α+kπ) = - \cos α\)

Suy ra \(\tan(α+kπ) = \tanα\)

Chứng minh tương tự ta có: \(\cot(α+kπ) = \cotα; k ∈\mathbb Z\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay