Câu 3 trang 70 SGK Đại số 10 - Bài 3. Giải các phương trìnha) \(\sqrt {x -... DeHocTot.com

Câu 3 trang 70 SGK Đại số 10

Toán


Bài 3. Giải các phương trình

a) \(\sqrt {x - 5}  + x = \sqrt {x - 5}  + 6\)

b) \(\sqrt {1 - x}  + x = \sqrt {x-1}  + 2\)

c) \({{{x^2}} \over {\sqrt {x - 2} }} = {8 \over {\sqrt {x - 2} }}\)

d) \(3 + \sqrt {2 - x}  = 4{x^2} - x + \sqrt {x - 3} \)

Trả lời:

a) \(\sqrt {x - 5}  + x = \sqrt {x - 5}  + 6\)

ĐKXĐ: \(x≥5\)

\(\sqrt {x - 5}  + x = \sqrt {x - 5}  + 6 ⇔ x = 6\) (  thỏa mãn )

Tập nghiệm \(S = {\rm{\{ }}6\} \)

b) \(\sqrt {1 - x}  + x = \sqrt {x-1}  + 2\)

ĐKXĐ: \(1 – x ≥ 0\) và \(x -1 ≥ 0 ⇔ x = 1\)

Thay \(x = 1\) và0 phương trình ta được: \(\sqrt {1 - 1}  + 1\ne \sqrt {1-1}  + 2\),

do đó \(x = 1\) không là nghiệm đúng phương trình,

Vậy phương trình vô nghiệm.

c) \({{{x^2}} \over {\sqrt {x - 2} }} = {8 \over {\sqrt {x - 2} }}\)

ĐKXĐ: \(x>2\)

\(⇔ {{{x^2} - 8} \over {\sqrt {x - 2} }} = 0\) 

\( \Rightarrow {x^2} - 8 = 0 \Leftrightarrow \left[ \matrix{
x = 2\sqrt 2\text{( thỏa mãn )} \hfill \cr
x = - 2\sqrt 2\text{ (loại )} \hfill \cr} \right.\)

Tập nghiệm \(S = \{ 2\sqrt 2 \} \)

d) \(3 + \sqrt {2 - x}  = 4{x^2} - x + \sqrt {x - 3} \)

 \(\sqrt {2 - x}\) xác định với \(2 – x ≥ 0 ⇔ x≤2\)

\(\sqrt {x - 3}\) xác định với \(x-3 ≥ 0 ⇔ x ≥ 0\);

\((-∞,2] ∩ [3, +∞) = Ø\)

Biểu thức của phương trình không xác định với mọi \(x ∈\mathbb R\).

Vậy phương trình vô nghiệm.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay