Câu 3 trang 93 SGK Hình học 10 - Bài 3. Tìm tập hợp các điểm cách đều... DeHocTot.com

Câu 3 trang 93 SGK Hình học 10

Toán


Bài 3. Tìm tập hợp các điểm cách đều hai đường thẳng:

\({\Delta _1} : 5x + 3y – 3 = 0\)

\({\Delta _2}: 5x + 3y + 7 = 0\)

Trả lời:

Gọi \(M(x; y)\) là một điểm bất kì trong mặt phẳng, ta có:

\(\eqalign{
& d(M,{\Delta _1}) = {{|5x + 3y - 3|} \over {\sqrt {{5^2} + {3^2}} }} = {{|5x + 3y - 3|} \over {\sqrt {34} }} \cr
& d(M,{\Delta _2}) = {{|5x + 3y + 7|} \over {\sqrt {{5^2} + {3^2}} }} = {{|5x + 3y + 7|} \over {\sqrt {34} }} \cr} \)

 Điểm \(M\) cách đều hai đường thẳng \({\Delta _1},{\Delta _2}\) nên: 

\(\eqalign{
& {{|5x + 3y - 3|} \over {\sqrt {34} }} = {{|5x + 3y + 7|} \over {\sqrt {34} }} \cr
& \Leftrightarrow |5x + 3y - 3| = |5x + 3y + 7| \cr} \)

Ta xét hai trường hợp:

(*) \(5x + 3y – 3 = - (5x + 3y + 7) ⇔ 5x + 3y + 2 = 0\)

(**) \(5x + 3y – 3 = 5x + 3y + 7\) (vô nghiệm)

Vậy tập hợp các điểm \(M\) cách đều hai đường thẳng \({\Delta _1},{\Delta _2}\)  là đường thẳng  \(Δ: 5x + 3y + 2 = 0\)

Dễ thấy \(Δ\) song song với \({\Delta _1},{\Delta _2}\)  và hai đường thẳng \({\Delta _1},{\Delta _2}\)  nằm về hai phía đối với \(Δ\).



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay