Câu 5 trang 93 SGK Hình học 10 - Bài 5. Cho ba điểm \(A(4; 3), B(2; 7), C(-3; -... DeHocTot.com

Câu 5 trang 93 SGK Hình học 10

Toán


Bài 5. Cho ba điểm \(A(4; 3), B(2; 7), C(-3; -8)\)

a) Tìm tọa độ điểm \(G\) , trực tâm \(H\) của tam giác \(ABC\).

b) Tìm \(T\) là trực tâm của đường tròn ngoại tiếp tam giác \(ABC\). Chứng minh \(T, G, H\) thẳng hàng.

c) Viết phương trình đường tròn ngoại tiếp tam giác \(ABC\).

Trả lời:

Ta có:

\(\eqalign{
& {x_G} = {{{x_A} + {x_B} + {x_C}} \over 3} \Rightarrow {x_G} = {{4 + 2 - 3} \over 3} = 1 \cr
& {y_G} = {{{y_A} + {y_B} + {y_C}} \over 3} \Rightarrow {y_G} = {{3 + 7 - 8} \over 3} = {2 \over 3} \cr} \)

Vậy \(G\left(1,{2 \over 3}\right)\)

Gọi \((x; y)\) là tọa độ của \(H\)

\(\eqalign{
& \overrightarrow {AH} = (x - 4,y - 3);\overrightarrow {BC} = ( - 5, - 15) \cr
& \overrightarrow {BH} = (x - 2,y - 7);\overrightarrow {AC} = ( - 7, - 11) \cr
& \overrightarrow {AH} \bot \overrightarrow {BC} \Leftrightarrow \overrightarrow {AH} .\overrightarrow {BC} = 0 \cr
& \Leftrightarrow - 5(x - 4) - 15(y - 3) = 0 \Leftrightarrow x + y - 13 = 0 \cr
& \overrightarrow {BH} \bot \overrightarrow {AC} \Leftrightarrow \overrightarrow {BH} .\overrightarrow {AC} = 0 \cr
& \Leftrightarrow - 7(x - 2) - 11(y - 7) = 0 \Leftrightarrow 7x + 11y - 91 = 0 \cr} \)

Tọa độ điểm H là nghiệm của hệ phương trình:

\(\left\{ \matrix{
x + y - 13 = 0 \hfill \cr
7x + 11y - 91 = 0 \hfill \cr} \right. \Rightarrow H(13;0)\)

b) Tâm \(T\) của đường tròn ngoại tiếp tam giác \(ABC\) thỏa mãn điều kiện

\(TA = TB = TC ⇒ TA^2= TB^2= TC^2\), cho ta:

\({\left( {x{\rm{ }}-{\rm{ }}4} \right)^2} +{\left( {y-3} \right)^2} = {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}2} \right)^2} + {\left( {y{\rm{ }}-{\rm{ }}7} \right)^2} \Leftrightarrow {\rm{ }}x{\rm{ }}-{\rm{ }}2y{\rm{ }} + {\rm{ }}7 =0\)

\({\left( {x{\rm{ }}-{\rm{ }}4} \right)^2} +{\left( {y-3} \right)^2} = {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}3} \right)^2} + {\rm{ }}{\left( {y +8} \right)^2} \Leftrightarrow {\rm{ }}7x{\rm{ }} + 11y +24 = 0\)

Do đó tọa độ tâm \(T\) của đường tròn ngoại tiếp tam giác \(ABC) là nghiệm của hệ:

\(\left\{ \matrix{
x - 2y + 7 = 0 \hfill \cr
7x + 11y + 24 = 0 \hfill \cr} \right. \Rightarrow T( - 5;1)\)

Ta có: \(\overrightarrow {TH}  = ( - 18;1);\overrightarrow {TG}  = (6;{-1 \over 3})\)

Ta có: \(\overrightarrow {TH}  = {3}\overrightarrow {TG} \)

Vậy ba điểm \(H, G, T\) thẳng hàng.

c) Đường tròn ngoại tiếp tam giác \(ABC\) có tâm \(T(-5; 1)\), bán kính \(R = AT = \sqrt{85}\)

\({R^2} = A{T^2} = {\left( { - 5-{\rm{ }}4} \right)^2} + {\rm{ }}{\left( {1-3} \right)^2} = 85\)

Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là:

\((x + 5)^2+ (y – 1)^2= 85\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay