Câu 6 trang 93 SGK Hình học 10 - Bài 6. Lập phương trình hai đường phân ... DeHocTot.com

Câu 6 trang 93 SGK Hình học 10

Toán


Bài 6. Lập phương trình hai đường phân giác của các góc tạo bởi đường thẳng \(3x – 4y + 12 = 0\) và \(12x+5y-7 = 0\)

Trả lời:

Gọi \(M(x; y)\) thuộc đường phân giác của góc tạo bởi đường thẳng trên.

Khi đó, khoảng cách từ \(M\) đến \(d_1 : 3x  - 4y + 12 = 0\) là:

 \(d(M,{d_1}) = {{|3x - 4y + 12|} \over {\sqrt {9 + 16} }} = {{|3x - 4y + 12|} \over 5}\)

Khoảng cách từ \(M\) đến \(d_2: 12x + 15y – 7 = 0\) là:

\(d(M,{d_2}) = {{|12x + 5y - 7|} \over {\sqrt {144 + 25} }} = {{|12x + 5y - 7|} \over {13}}\)

Ta có: \(M\) thuộc đường  phân giác của góc tạo bởi hai đường thẳng \(d_1\) và \(d_2\) nên cách đều hai đường thẳng đó.Suy ra: 

\(\eqalign{
& d(M,{d_1}) = d(M,{d_2}) \Leftrightarrow {{|3x - 4y + 12|} \over 5} = {{|12x + 5y - 7|} \over {13}} \cr
& \Leftrightarrow \left[ \matrix{
{{3x - 4y + 12} \over 5} = {{12x + 5y - 7} \over {12}} \hfill \cr
{{3x - 4y + 12} \over 5} = - {{12x + 5y - 7} \over {13}} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
21x + 77y - 191 = 0 \hfill \cr
99x - 27y + 121 = 0 \hfill \cr} \right. \cr} \)

Vậy ta có phương trình của hai đường phân giác của các góc tạo bởi \(d_1\) và \(d_2\) là:

\(\Delta _1: 21x + 77y – 191 = 0\)

\(\Delta _2: 99x – 27y + 121 = 0\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay