Câu 7 trang 156 SGK Đại số 10 - Bài 7. Chứng minh các đồng nhất thức.a)... DeHocTot.com

Câu 7 trang 156 SGK Đại số 10

Toán


Bài 7. Chứng minh các đồng nhất thức.

a) \({{1 - \cos x + \cos 2x} \over {\sin 2x - {\mathop{\rm s}\nolimits} {\rm{in x}}}} = \cot x\)

b) \({{{\mathop{\rm sinx}\nolimits}  + sin{x \over 2}} \over {1 + \cos x + \cos {x \over 2}}} = \tan {x \over 2}\)

c) \({{2\cos 2x - \sin 4x} \over {2\cos 2x + \sin 4x}} = {\tan ^2}({\pi  \over 4} - x)\)

d) \(\tan x - \tan y = {{\sin (x - y)} \over {\cos x.cosy}}\)

Trả lời:

a)

\({{1 - \cos x + \cos 2x} \over {\sin 2x - {\mathop{\rm s}\nolimits} {\rm{in x}}}} = {{1 + \cos 2x - \cos x} \over {2\sin x\cos x - {\mathop{\rm sinx}\nolimits} }} = {{\cos x(2\cos x - 1)} \over {{\mathop{\rm s}\nolimits} {\rm{inx}}(2\cos x - 1)}} = \cot x\)

b) 

\( {{{\mathop{\rm sinx}\nolimits} + sin{x \over 2}} \over {1 + \cos x + \cos {x \over 2}}}\)

\(= {{2\sin {x \over 2}\cos {x \over 2} + \sin {x \over 2}} \over {2{{\cos }^2}{x \over 2} + \cos {x \over 2}}}\)

\(= {{\sin {x \over 2}(2\cos {x \over 2} + 1)} \over {\cos {x \over 2}(2\cos {x \over 2} + 1)}}\)=

\(=\tan {x \over 2} \ \)

c) 

\({{2\cos 2x - \sin 4x} \over {2\cos 2x + \sin 4x}}\)

\(= {{2\cos 2x - 2\sin2 x\cos 2x} \over {2\cos 2x + 2\sin 2x\cos 2x}}\)

\(= {{1 - \sin 2x} \over {1 + \sin 2x}}\)
\(= {{1 - \cos ({\pi \over 2} - 2x)} \over {1 + \cos ({\pi \over 2} - 2x)}}\)

\(= {{2{{\sin }^2}({\pi \over 4} - x)} \over {2{{\cos }^2}({\pi \over 4} - x)}}\) 
\(= {\tan ^2}({\pi \over 4} - x) \)

d) 

\(\tan x - \tan y\)

\(= {{{\mathop{\rm sinx}\nolimits} } \over {{\mathop{\rm cosx}\nolimits} }} - {{\sin y} \over {\cos y}}\)

\(= {{\sin {\rm{x}}\cos y - \cos x\sin y} \over {\cos x\cos y}}\)

\(= {{\sin (x - y)} \over {\cos x\cos y}}\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay