Câu 7 trang 70 SGK Đại số 10 - Bài 7. Giải hệ phương trìnha) \(\left\{ \m... DeHocTot.com

Câu 7 trang 70 SGK Đại số 10

Toán


Bài 7. Giải hệ phương trình

a) \(\left\{ \matrix{2x - 3y + z = - 7 \hfill \cr - 4x + 5y + 3z = 6 \hfill \cr x + 2y - 2z = 5 \hfill \cr} \right.\)

b) \(\left\{ \matrix{x + 4y - 2z = 1 \hfill \cr - 2x + 3y + z = - 6 \hfill \cr 3x + 8y - z = 12 \hfill \cr} \right.\)

Trả lời:

a) Nhân phương trình thứ ba với \(4\) rồi cộng vào phương trình hai.

Nhân phương trình thứ ba với \(-2\) cộng vào phương trình thứ nhất ta có:

\(\left\{ \matrix{
- 7y + 5z = - 17 \hfill \cr
13y - 5z = 26 \hfill \cr
x + 2y - 2z = 5 \hfill \cr} \right.\)

Cộng phương trình thứ nhất với phương trình thứ hai có hệ mới:

\(\left\{ \matrix{6y = 9 \hfill \cr 13y - 5z = 26 \hfill \cr x + 2y - 2z = 5 \hfill \cr} \right.\)

⇔\(\left\{ \matrix{x = {{ - 3} \over 5} \hfill \cr y = {3 \over 2} \hfill \cr z = {{ - 13} \over {10}} \hfill \cr} \right.\)

b) Nhân phương trình thứ nhât với \(2\) rồi cộng với phương trình thứ hai

Nhân phương trình thứ nhât với \(-3\) rồi cộng với phương trình thứ ba ta có:

\(\left\{ \matrix{x + 4y - 2z = 1 \hfill \cr 11y - 3z = - 4 \hfill \cr - 4y + 5z = 9 \hfill \cr} \right.\)

Nhân phương trình hai với \(5\) và phương trình thứ ba với \(3\) rồi cộng hai phương trình đó lại ta được:

\(\left\{ \matrix{x + 4y - 2z = 1 \hfill \cr 11y - 3z = - 4 \hfill \cr 43z = 83 \hfill \cr} \right.\)

\(⇔\left\{ \matrix{x = {{181} \over {43}} \hfill \cr y = {7 \over {43}} \hfill \cr z = {{83} \over {43}} \hfill \cr} \right.\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay