Lý thuyết đại cương về phương trình - ... DeHocTot.com

Lý thuyết đại cương về phương trình

Toán


Lý thuyết về đại cương về phương trình

Tóm tắt lý thuyết

1. Phương trình một ẩn

+ Phương trình một ẩn số \(x\) là mệnh đề chứa biến có dạng:

\(f(x) = g(x)\)     (1)

trong đó \(f(x), g(x)\) là các biểu thức cùng biến số \(x\). Ta gọi \(f(x)\) là vế trái, \(g(x)\) là vế phải của phương trình.

+ Điều kiện xác định (ĐKXĐ) của phương trình là điều kiện của biến x để các biểu thức ở hai vế có nghĩa.

+ Nếu có số \(x_0\) thỏa mãn ĐKXĐ và \(f(x_0)= g(x_0)\) là mệnh đề đúng thì ta nói số \(x_0\) nghiệm đúng phương trình (1) hay \(x_0\) là một nghiệm của phương trình (1). Một phương trình có thể có nghiệm, có thể vô nghiệm. Ví dụ: \(2\) là một nghiệm của phương trình: \(2 = 3x - x^2\)

2. Phương trình trương đương

Hai phương trình 

\({f_1}\left( x \right) = {g_1}\left( x \right)\) (1)

\({f_2}\left( x \right) = {g_2}\left( x \right)\) (2)

đươc gọi là tương đương, kí hiệu \({f_1}\left( x \right) = {g_1}\left( x \right)⇔ {f_2}\left( x \right) = {g_2}\left( x \right)\) nếu các tập nghiệm của (1) và (2) bằng nhau.

Định lí:

a) Nếu \(h(x)\) là biểu thức thỏa mãn ĐKXĐ của phương trình \(f(x) = g(x)\) thì 

\(f(x) + h(x) = g(x) + h(x) ⇔ f(x) = g(x)\)

b) Nếu \(h(x)\) thỏa mãn ĐKXĐ và khác \(0\) với mọi \(x\) thỏa mãn ĐKXĐ thì 

\(f(x).h(x) = g(x).h(x)  ⇔ f(x) = g(x)\)

\(\frac{f(x)}{h(x)}=\frac{g(x)}{h(x)}  ⇔ f(x) = g(x)\).

3. Phương trình hệ quả

Phương trình \({f_2}\left( x \right) = {g_2}\left( x \right)\) là phương trình hệ quả của phương trình \({f_1}\left( x \right) = {g_1}\left( x \right)\), kí hiệu 

\({f_1}\left( x \right) = {g_1}\left( x \right)\) \(\Leftrightarrow \)\({f_2}\left( x \right) = {g_2}\left( x \right)\)
nếu tập nghiệm của phương trình thứ nhất là tập con của tập nghiệm của phương trình thứ hai.

Ví dụ: \(2x = 3 - x \Rightarrow (x - 1)(x + 2) = 0\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay