Lý thuyết giá trị lượng giác của một cung - 1. Định nghĩaTrên đường tròn lượng gi... DeHocTot.com

Lý thuyết giá trị lượng giác của một cung

Toán


1. Định nghĩa

Trên đường tròn lượng giác cho cung \(\overparen{PQ}\) có số đo \(sđ\overparen{PQ}= α\) thì:

+ Tung độ của \(M\) gọi là \(\sin\) của \(α\), kí hiệu \(\sin α\): \(\overline {OQ}= \sinα\)

+ Hoành độ của \(M\) gọi là cosin của \(α\), kí hiệu là \(\cosα\): \(\overline {OP}= \cosα\)

+ Nếu \(cosα \ne 0\), ta gọi là tang của \(α\), kí hiệu \(tanα\) là tỉ số: \({{\sin \alpha } \over {cos\alpha }} = \tan \alpha \)

+ Nếu \(\sinα \ne 0\), ta gọi là cotang của \(α\), kí hiệu là: \({{{\rm{cos}}\alpha } \over {\sin \alpha }} = \cot \alpha \)

Ghi chú: Vì \(sđ\overparen{AM} =sđ\overparen{(OA, OM)}\) nên định nghĩa các giá trị lượng giác của cung lượng giác \(α\) cũng là giá trị lượng giác của góc lượng giác \(α\).

2. Hệ quả

a) \(-1 ≤ sinα ≤ 1, -1 ≤ cosα ≤ 1 ;∀α \in\mathbb R\) 

\(\sin(α + k2π) = \sinα ;∀k \in \mathbb R\)

\(cos(α + k2π) = cosα ,∀k \in\mathbb R\)

b) \(tanα\) xác định với mọi \\(α \ne {\pi\over 2} + kπ, k \in\mathbb Z\)

\(cotα\) xác định với mọi \(α \ne kπ, k \in\mathbb Z\)

                \(tan(α + kπ) = tanα ,∀k\in\mathbb R\)

               \( cot(α + kπ) = cotα ,∀k \in\mathbb R\)

c) Bảng xác định dấu của các giá trị lượng giác

d) Các hệ thức lượng giác cơ bản:

\(si{n^2}\alpha {\rm{ }} + {\rm{ }}co{s^2}\alpha {\rm{ }} = {\rm{ }}1\);                 \(tanα.cotα = 1\)

\(1 + {\tan ^2}\alpha  = {1 \over {{\rm{co}}{{\rm{s}}^2}\alpha }}\)      :\(1 + {\cot ^2}\alpha  = {1 \over {{{\sin }^2}\alpha }}\)

3. Giá trị lượng giác của các cung có liên quan đặc biệt

a) Cung đối nhau: \(α\) và \((-α)\)

\(sin(-α) = -sinα \)                   \(  tan(-α) = -tanα\)

\(cos(-α) = cosα\)                       \(cot(-α) = -cotα\)

b) Cung bù nhau: \(α\) và \(π - α\)

\(sin(π - α) = sinα\)                         \(tan(π - α) = -tanα\)

\(cos(π - α) = -cosα\)                            \(cot(π - α) = -cotα\)

c) Cung hơn nhau \(π\): \(α\) và \(π + α\) 

\(sin(π + α) = -sinα\)                   \(tan(π + α) = tanα\)

\(cos(π + α) = -cosα\)                 \(cot(π + α) = cotα\)

d) Cung phụ nhau: \(α\) và \({\pi  \over 2} - \alpha \)

\(sin\left( {{\pi  \over 2} - \alpha } \right) = cosα\)                                \(tan\left( {{\pi  \over 2} - \alpha } \right)= cosα\)

\(cos \left( {{\pi  \over 2} - \alpha } \right) = sinα  \)                              \(cos=\left( {{\pi  \over 2} - \alpha } \right) = tan α\)

 

 

 

   



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay