Lý thuyết phương trình đường tròn - 1.Lập phương trình đường tròn có tâm v... DeHocTot.com

Lý thuyết phương trình đường tròn

Toán


1.Lập phương trình đường tròn có tâm và bán kính cho trước

Phương trình đường tròn có tâm \(I(a; b)\), bán kính \(R\) là :

    $${(x - a)^2} + {(y - b)^2} = {R^2}$$

2. Nhận xét

Phương trình đường tròn  \({(x - a)^2} + {(y - b)^2} = {R^2}\)  có thể được viết dưới dạng 

                             $${x^2} + {y^2} - 2ax - 2by + c = 0$$

trong đó \(c = {a^2} + {b^2} + {R^2}\)

Ngược lại, phương trình \({x^2} + {y^2} - 2ax - 2by + c = 0\) là phương trình của đường tròn \((C)\) khi và chỉ khi  \({a^2} + {b^2}-c>0\). Khi đó đường tròn \((C)\) có tâm  \(I(a; b)\) và bán kính \(R = \sqrt{a^{2}+b^{2} - c}\)

3.Phương trình tiếp tuyến của đường tròn

Cho điểm \({M_0}({x_0};{y_0})\) nằm trên đường tròn \((C)\) tâm  \(I(a; b)\).Gọi \(∆\) là tiếp tuyến với \((C)\) tại \(M_0\)

Ta có \(M_0\) thuộc \(∆\) và vectơ \(\vec{IM_{0}}=({x_0} - a;{y_0} - b)\) là vectơ  pháp tuyến cuả \( ∆\)

Do đó  \(∆\) có phương trình là :  

$$({x_0} - a)(x - {x_0}) + ({y_0} - b)(y - {y_0}) = 0$$

Phương trình (1) là phương trình tiếp tuyến của đường tròn \({(x - a)^2} + {(y - b)^2} = {R^2}\)  tại điểm \(M_0\) nằm trên đường tròn.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay