Câu 1 trang 130 SGK Đại số và Giải tích 11 Nâng cao - Bài 1. Chứng minh rằng các dãy số với s... DeHocTot.com

Câu 1 trang 130 SGK Đại số và Giải tích 11 Nâng cao

Toán nâng cao


Bài 1. Chứng minh rằng các dãy số với số hạng tổng quát sau đây có giới hạn 0 :

a.  \({{{{\left( { - 1} \right)}^n}} \over {n + 5}}\)

b.  \({{\sin n} \over {n + 5}}\)

c.  \({{\cos 2n} \over {\sqrt n + 1}}\)

Giải:

a. Ta có:

\(\left| {{{{{\left( { - 1} \right)}^n}} \over {n + 5}}} \right| = {1 \over {n + 5}} < {1 \over n}\,\text{ và }\,\lim {1 \over n} = 0 \Rightarrow \lim {{{{\left( { - 1} \right)}^n}} \over {n + 5}} = 0\)

b.  \(\left| {{{\sin n} \over {n + 5}}} \right| \le {1 \over {n + 5}} < {1 \over n}\,\text{ và }\,\lim {1 \over n} = 0 \Rightarrow \lim {{\sin n} \over {n + 5}} = 0\)

c.  \(\left| {{{\cos 2n} \over {\sqrt n + 1}}} \right| \le {1 \over {\sqrt n + 1}} < {1 \over {\sqrt n }},\lim{1 \over {\sqrt n }} = 0 \Rightarrow \lim {{\cos 2n} \over {\sqrt n + 1}} = 0\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay