Câu 13 trang 17 SGK Đại số và Giải tích 11 Nâng cao - Bài 13. Xét hàm số  \(y = f\left( x \right) ... DeHocTot.com

Câu 13 trang 17 SGK Đại số và Giải tích 11 Nâng cao

Toán nâng cao


Bài 13. Xét hàm số  \(y = f\left( x \right) = \cos {x \over 2}\)

a. Chứng minh rằng với mỗi số nguyên \(k\), \(f(x + k4π) = f(x)\) với mọi \(x\).

b. Lập bảng biến thiên của hàm số \(y = \cos {x \over 2}\) trên đoạn \([-2π ; 2π]\).

c. Vẽ đồ thị của các hàm số \(y = \cos x\) và \(y = \cos {x \over 2}\) trong cùng một hệ trục tọa độ vuông góc \(Oxy\).

d. Trong mặt phẳng tọa độ \(Oxy\), xét phép biến hình \(F\) biến mỗi điểm \((x ; y)\) thành điểm \((x'; y')\) sao cho \(x'= 2x\) và \(y'= y\). Chứng minh rằng F biến đồ thị của hàm số \(y = \cos x\) thành đồ thị của hàm số  \(y = \cos {x \over 2}.\) 

Giải

a.  \(f\left( {x + k4\pi } \right) = \cos \left( {{x \over 2} + k2\pi } \right) = \cos {x \over 2} = f\left( x \right)\)

b. Bảng biến thiên :

 

c.

d. Nếu đặt \(x'= 2x, y'= y\) thì \(y = \cos x\) khi và chỉ khi \(y' = \cos {{x'} \over 2}\). Do đó phép biến đổi xác đinh bởi \((x ; y) ↦ (x' ; y')\) sao cho \(x' = 2x, y'= y\) biến đồ thị hàm số \(y = \cos x\) thành đồ thị hàm số  \(y = \cos {x \over 2}.\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay