Câu 14 trang 28 SGK Đại số và Giải tích 11 Nâng cao - Bài 14. Giải các phương trình sau :a.  \(\... DeHocTot.com

Câu 14 trang 28 SGK Đại số và Giải tích 11 Nâng cao

Toán nâng cao


Bài 14. Giải các phương trình sau :

a.  \(\sin 4x = \sin {\pi \over 5}\)

b.  \(\sin \left( {{{x + \pi } \over 5}} \right) = - {1 \over 2}\)

c.  \(\cos {x \over 2} = \cos \sqrt 2 \)

d.  \(\cos \left( {x + {\pi \over {18}}} \right) = {2 \over 5}.\)

Giải:

a. Ta có:  

\(\sin 4x = \sin {\pi \over 5} \Leftrightarrow \left[ {\matrix{{4x = {\pi \over 5} + k2\pi } \cr {4x = \pi - {\pi \over 5} + k2\pi } \cr} \,\,\left( {k \in\mathbb Z} \right) \Leftrightarrow \left[ {\matrix{{x = {\pi \over {20}} + k{\pi \over 2}} \cr {x = {\pi \over 5} + k{\pi \over 2}} \cr} } \right.} \right.\,\,\left( {k \in\mathbb Z} \right)\)

b. Vì \( - {1 \over 2} =- \sin {\pi \over 6} = \sin \left( { - {\pi \over 6}} \right)\) nên :\(\sin \left( {{{x + \pi } \over 5}} \right) = - {1 \over 2} \Leftrightarrow \left[ {\matrix{{{{x + \pi } \over 5} = - {\pi \over 6} + k2\pi } \cr {{{x + \pi } \over 5} = \pi + {\pi \over 6} + k2\pi } \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = - {{11\pi } \over 6} + k10\pi } \cr {x = {{29\pi } \over 6} + k10\pi } \cr} } \right.\,\,\left( {k \in\mathbb Z} \right)\) 

c.  

\(\cos {x \over 2} = \cos \sqrt 2 \Leftrightarrow {x \over 2} = \pm \sqrt 2 + k2\pi \Leftrightarrow x = \pm 2\sqrt 2 + k4\pi \,\left( {k \in\mathbb Z} \right)\)

d. Vì \(0 < {2 \over 5} < 1\) nên có số \(α\) sao cho \(\cos \alpha = {2 \over 5}.\) Do đó :

\(\cos \left( {x + {\pi \over {18}}} \right) = {2 \over 5} \Leftrightarrow \cos \left( {x + {\pi \over {18}}} \right) = \cos \alpha \Leftrightarrow x = \pm \alpha - {\pi \over {18}} + k2\pi ,k \in \mathbb Z\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay