Câu 2 trang 91 SGK Hình học 11 Nâng cao - Cho hình chóp S.ABCD.a. Chứng minh rằng nế... DeHocTot.com

Câu 2 trang 91 SGK Hình học 11 Nâng cao

Toán nâng cao


Cho hình chóp S.ABCD.

a. Chứng minh rằng nếu ABCD là hình bình hành thì \(\overrightarrow {SB}  + \overrightarrow {SD}  = \overrightarrow {SA}  + \overrightarrow {SC} \). Điều ngược lại có đúng không ?

b. Gọi O là giao điểm của AC và BD. Chứng tỏ rằng ABCD là hình bình hành khi và chỉ khi \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO} \)

Giải

a. Ta có:

\(\eqalign{  & \overrightarrow {SB}  + \overrightarrow {SD}  = \overrightarrow {SA}  + \overrightarrow {SC}   \cr  &  \Leftrightarrow \overrightarrow {SB}  - \overrightarrow {SC}  = \overrightarrow {SA}  - \overrightarrow {SD}  \Leftrightarrow \overrightarrow {CB}  = \overrightarrow {DA}  \cr} \)

⇔ ABCD là hình bình hành.

b. Ta có:

\(\eqalign{  & \overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO}   \cr  &  \Leftrightarrow \overrightarrow {SO}  + \overrightarrow {OA}  + \overrightarrow {SO}  + \overrightarrow {OB}  + \overrightarrow {SO}  + \overrightarrow {OC}  + \overrightarrow {SO}  + \overrightarrow {OD}  = 4\overrightarrow {SO}   \cr  &  \Leftrightarrow \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \,\,\left( * \right) \cr} \)

Nếu ABCD là hình bình hành thì \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \) suy ra

 \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO} \) (do (*))

Ngược lại, giả sử \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO} ,\) ta có (*).

Gọi M, N lần lượt là trung điểm của AC, BD thì :

\(\overrightarrow {OA}  + \overrightarrow {OC}  = 2\overrightarrow {OM} ,\overrightarrow {OB}  + \overrightarrow {OD}  = 2\overrightarrow {ON} \)

Từ (*) suy ra \(2\left( {\overrightarrow {OM}  + \overrightarrow {ON} } \right) = \overrightarrow 0 ,\) điều này chứng tỏ O, M, N thẳng hàng

Mặt khác, M thuộc AC, N thuộc BD và O là giao điểm của AC và BD nên O, M, N thẳng hàng chỉ xảy ra khi O ≡ M ≡ N, tức O là trung điểm AC và BD, hay ABCD là hình bình hành.

 



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay