Câu 21 trang 55 SGK Hình học 11 Nâng cao - ... DeHocTot.com

Câu 21 trang 55 SGK Hình học 11 Nâng cao

Toán nâng cao


Cho tứ diện ABCD. Các điểm P, Q lần lượt là trung điểm của AB và CD; điểm R nằm trên cạnh BC sao cho BR = 2RC. Gọi S là giao điểm của mp(PQR) và cạnh AD. Chứng minh rằng AS = 2SD

Giải:

Định lí Menelaus

Giả sử đường thẳng Δ cắt các cạnh (hoặc

phần kéo dài) BC, CA, AB lần lượt tại M, N, P thì :

\({{MB} \over {MC}}.{{NC} \over {NA}}.{{PA} \over {PB}} = 1\)

Áp dụng định lí để giải bài toán

Gọi {I} = PR ∩ AC

Trong mp(ACD) goi {S} = QI ∩ AD

Thì {S} = AD ∩ (PQR)

Áp dụng định lí Menelaus trong tam giác ABC

với cát tuyến PRI ta có

\({{PA} \over {PB}}.{{RB} \over {RC}}.{{IC} \over {IA}} = 1 \Rightarrow 1.2.{{IC} \over {IA}} = 1\)

\( \Rightarrow {{IC} \over {IA}} = {1 \over 2}\) ⇒ C là trung điểm của AI.

Áp dụng định lí Menelaus trong tam giác ACD

với cát tuyến IQS ta có :

\({{IC} \over {IA}}.{{QD} \over {QC}}.{{SA} \over {SD}} = 1 \Rightarrow {1 \over 2}.1.{{SA} \over {SD}} = 1 \)

\(\Rightarrow SA = 2SD\,\,\left( {dpcm} \right)\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay