Câu 22 trang 111 SGK Hình học 11 Nâng cao - Cho hình hộp ABCD.A’B’C’D’ có AB = a, ... DeHocTot.com

Câu 22 trang 111 SGK Hình học 11 Nâng cao

Toán nâng cao


Cho hình hộp ABCD.A’B’C’D’ có AB = a, BC = b, CC’ = c. Nếu

\(AC' = BD' = B'D = \sqrt {{a^2} + {b^2} + {c^2}} \)

Thì hình hộp đó có phải là hình hộp chữ nhật không ? Vì sao ?

Giải

Áp dụng tính chất : “Tổng bình phương hai đường chéo hình bình hành bằng tổng bình phương bốn cạnh của nó” (BT 38, 4 chương II).

Ta có:

\(\eqalign{  & AC{'^2} + A'{C^2} = 2\left( {AA{'^2} + A'{C^2}} \right)  \cr  & B'{D^2} + BD{'^2} = 2\left( {BB{'^2} + B{D^2}} \right)  \cr  &  \Rightarrow AC{'^2} + A'{C^2} + BD{'^2} + B'{D^2} \cr&\;\;\;= 2\left( {{c^2} + {c^2} + A{C^2} + B{D^2}} \right) = 4\left( {{a^2} + {b^2} + {c^2}} \right)  \cr  &  \Rightarrow A'C = AC' = B'D = BD' \cr} \)

⇒ AA’C’C và BB’D’D là các hình chữ nhật .

Từ đó suy ra AA’ ⊥ AC và AA’ ⊥ BD. Do đó AA’ ⊥ (ABCD), tức hình hộp ABCD.A’B’C’D’là hình hộp chữ nhật.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay