Câu 22 trang 151 SGK Đại số và Giải tích 11 Nâng cao - Bài 22. Cho hàm số \(f\left( x \right) = \cos ... DeHocTot.com

Câu 22 trang 151 SGK Đại số và Giải tích 11 Nâng cao

Toán nâng cao


Bài 22. Cho hàm số \(f\left( x \right) = \cos {1 \over x}\) và hai dãy số \(\left( {x{'_n}} \right),\left( {x{"_n}} \right)\) với

\(x_n' = {1 \over {2n\pi }},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x''_n= {1 \over {\left( {2n + 1} \right){\pi \over 2}}}\)

a. Tìm giới hạn của các dãy số  \(\left( {x_n'} \right),\left( {x_n"} \right),\left( {f\left( {x_n'} \right)} \right)\,va\,\left( {f\left( {x_n"} \right)} \right)\)

b. Tồn tại hay không  \(\mathop {\lim }\limits_{x \to 0} \cos {1 \over x}?\)

Giải:

a. Ta có:

\(\eqalign{
& \lim x_n' = \lim {1 \over {2n\pi }} = 0 \cr
& \lim x''_n = \lim {1 \over {\left( {2n + 1} \right){\pi \over 2}}} = 0 \cr
& \lim f\left( {x{'_n}} \right) = \lim \cos 2n\pi = 1 \cr
& \lim f\left( {x{"_n}} \right) = \lim \cos \left( {2n + 1} \right){\pi \over 2} = 0 \cr} \)

b. Vì \(\lim f\left( {x{'_n}} \right) \ne \lim f\left( {x''{_n}} \right)\) nên không tồn tại  \(\mathop {\lim }\limits_{x \to 0} \cos {1 \over x}\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay