Câu 23 trang 31 SGK Đại số và Giải tích 11 Nâng cao - Bài 23. Tìm tập xác định của mỗi hàm ... DeHocTot.com

Câu 23 trang 31 SGK Đại số và Giải tích 11 Nâng cao

Toán nâng cao


Bài 23. Tìm tập xác định của mỗi hàm số sau :

a.  \(y = {{1 - \cos x} \over {2\sin x + \sqrt 2 }}\)

b.  \(y = {{\sin \left( {x - 2} \right)} \over {\cos 2x - \cos x}}\)

c.  \(y = {{\tan x} \over {1 + \tan x}}\)

d.  \(y = {1 \over {\sqrt 3 \cot 2x + 1}}\)

Giải

a.\(y = {{1 - \cos x} \over {2\sin x + \sqrt 2 }}\) xác định  \( \Leftrightarrow 2\sin x + \sqrt 2 \ne 0\)

\( \Leftrightarrow \sin x \ne - {{\sqrt 2 } \over 2} \Leftrightarrow \left\{ {\matrix{{x \ne - {\pi \over 4} + k2\pi } \cr {x \ne {{5\pi } \over 4} + k2\pi } \cr} } \right.\)                                                

Vậy tập xác định của hàm số đã cho là :

\(D =\mathbb R \backslash  \left( {\left\{ { - {\pi \over 4} + k2\pi ,k \in\mathbb Z} \right\} \cup \left\{ {{{5\pi } \over 4} + k2\pi ,k \in\mathbb Z} \right\}} \right)\)

b/ \(y = {{\sin \left( {x - 2} \right)} \over {\cos 2x - \cos x}}\) xác định

\(\eqalign{& \Leftrightarrow \cos 2x \ne \cos x \cr & \Leftrightarrow \left\{ {\matrix{{2x \ne x + k2\pi } \cr {2x \ne - x + k2\pi } \cr} } \right. \Leftrightarrow \left\{ {\matrix{{x \ne k2\pi } \cr {2x \ne k{{2\pi } \over 3}} \cr} } \right. \Leftrightarrow x \ne k{{2\pi } \over 3} \cr} \) 

Vậy \(D =\mathbb R \backslash  \left\{ {k{{2\pi } \over 3},k \in\mathbb Z} \right\}\)

c/ \(y = {{\tan x} \over {1 + \tan x}}\) xác định  \( \Leftrightarrow \tan x \ne - 1 \Leftrightarrow \left\{ {\matrix{{x \ne {\pi \over 2} + k\pi } \cr {x \ne - {\pi \over 4} + k\pi } \cr} } \right.\)

Vậy  \(D =\mathbb R \backslash  \left( {\left\{ {{\pi \over 2} + k\pi ,k \in\mathbb Z} \right\} \cup \left\{ { - {\pi \over 4} + k\pi ,k \in\mathbb Z} \right\}} \right)\)

d/ \(y = {1 \over {\sqrt 3 \cot 2x + 1}}\) xác định  \( \Leftrightarrow \cot 2x \ne - {1 \over {\sqrt 3 }}\)

\( \Leftrightarrow \left\{ {\matrix{{2x \ne k\pi } \cr {2x \ne - {\pi \over 3} + k\pi } \cr} } \right. \Leftrightarrow \left\{ {\matrix{{x \ne k{\pi \over 2}} \cr {x \ne - {\pi \over 6} + k{\pi \over 2}} \cr} } \right.\)

Vậy \(D =\mathbb R \backslash  \left( {\left\{ {k{\pi \over 2},k \in\mathbb Z} \right\} \cup \left\{ { - {\pi \over 6} + k{\pi \over 2},k \in\mathbb Z} \right\}} \right)\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay