Câu 27 trang 158 SGK Đại số và Giải tích 11 Nâng cao - Bài 27. Tìm các giới hạn sau (nếu có) :a... DeHocTot.com

Câu 27 trang 158 SGK Đại số và Giải tích 11 Nâng cao

Toán nâng cao


Bài 27. Tìm các giới hạn sau (nếu có) :

a.  \(\mathop {\lim }\limits_{x \to {2^ + }} {{\left| {x - 2} \right|} \over {x - 2}}\)

b.  \(\mathop {\lim }\limits_{x \to {2^ - }} {{\left| {x - 2} \right|} \over {x - 2}}\)

c.  \(\mathop {\lim }\limits_{x \to 2} {{\left| {x - 2} \right|} \over {x - 2}}\)

Giải:

a. Với mọi \(x > 2\), ta có \(\left| {x - 2} \right| = x - 2.\) Do đó :

\(\mathop {\lim }\limits_{x \to {2^ + }} {{\left| {x - 2} \right|} \over {x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} {{x - 2} \over {x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} 1 = 1\)

b. Với mọi \(x < 2\), ta có \(|x – 2| = 2 – x\). Do đó :

\(\mathop {\lim }\limits_{x \to {2^ - }} {{\left| {x - 2} \right|} \over {x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} {{2 - x} \over {x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} - 1 = - 1\)

c. Vì \(\mathop {\lim }\limits_{x \to {2^ + }} {{\left| {x - 2} \right|} \over {x - 2}} \ne \mathop {\lim }\limits_{x \to {2^ - }} {{\left| {x - 2} \right|} \over {x - 2}}\) nên không tồn tại  \(\mathop {\lim }\limits_{x \to 2} {{\left| {x - 2} \right|} \over {x - 2}}\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay