Câu 3 trang 120 SGK Hình học 11 Nâng cao - Cho hình chóp S.ABCD có đáy là hình vuông ... DeHocTot.com

Câu 3 trang 120 SGK Hình học 11 Nâng cao

Toán nâng cao


Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA ⊥ (ABCD). Hai điểm M và N lần lượt thay đổi trên cạnh CB và CD, đặt CM =x, CN = y. Tìm hệ thức liên hệ giữa x và y để :

a. Hai mặt phẳng (SAM) và (SAN) tạo với nhau góc 45˚ ;

b. Hai mặt phẳng (SAM) và (SMN) vuông góc với nhau.

Giải

a. Ta có: AM, AN cùng vuông góc với SA mà \(\widehat {MAN} \le 90^\circ \) nên \(\widehat {MAN}\) là góc giữa hai mặt phẳng (SAM) và (SAN). Hai mặt phẳng đó tạo với nhau góc 45˚ khi và chỉ khi \(\widehat {MAN} = 45^\circ \)

Mặt khác, M ϵ BC, N ϵ CD, \(\widehat {BAD} = 90^\circ \) nên điều

đó xảy ra khi \(\widehat {BAM} + \widehat {DAN} = 45^\circ ,\)

Từ đó ta có : \(1 = {{\tan \widehat {BAM} + \tan \widehat {DAN}} \over {1 - \tan \widehat {BAM}.\tan \widehat {DAN}}}\,\,\left( * \right)\)

(Áp dụng công thức \(\tan \left( {x + y} \right) = {{\tan x + \tan y} \over {1 - \tan x\tan y}}\) )

Vì \(\tan \widehat {BAM} = {{a - x} \over a},\tan \widehat {DAN} = {{a - y} \over a},\) nên \(\left( * \right) \Leftrightarrow 2{a^2} + xy = 2a\left( {x + y} \right)\)

Đó là hệ thức liên hệ giữa x và y để các mặt phẳng (SAM) và (SAN) tạo với nhau góc 45˚

b. Ta có: (SAM) ⊥ (ABCD), từ đó nếu (SMN) ⊥ (SAM) thì giao tuyến MN của (SMN) và (ABCD) sẽ vuông góc với (SAM), tức MN ⊥ AM.

Ngược lại, nếu có MN ⊥ AM thì do SA ⊥ MN nên MN ⊥ (SAM), suy ra (SMN) ⊥ (SAM)

Vậy (SAM) ⊥ (SMN) khi và chỉ khi \(\widehat {AMN} = 90^\circ .\)

\(\eqalign{  &  \Leftrightarrow {a^2} + {\left( {a - x} \right)^2} + {x^2} + {y^2} = {a^2} + {\left( {a - y} \right)^2}  \cr  &  \Leftrightarrow ay = x\left( {a - x} \right) \text{ với } 0 \le x \le a,0 \le y \le a. \cr} \)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay