Câu 3 trang 125 SGK Hình học 11 Nâng cao - Cho tam giác ABC và hai hình vuông ABMN, ACPQ ... DeHocTot.com

Câu 3 trang 125 SGK Hình học 11 Nâng cao

Toán nâng cao


Cho tam giác ABC và hai hình vuông ABMN, ACPQ như hình 134.

a. Xác định phép quay biến tam giác ABQ thành tam giác ANC.

b. Chứng tỏ rằng hai đoạn thẳng BQ, CN bằng nhau và vuông góc với nhau.

c. Gọi O, O’ là tâm của các hình vuông, I là trung điểm của BC. Chứng minh rằng tam giác OIO’ là tam giác vuông cân.

Giải

a. Ta có: AB = AN, AQ = AC và góc (AB, AN) bằng  góc (AQ, AC) = -90˚

Vậy phép quay tâm A, góc quay φ = -90˚ biến tam giác ABQ thành tam giác ANC.

b. Vì đoạn thẳng BQ biến thành đoạn thẳng NC nên BQ = NC và BQ ⊥ NC.

c. Theo kí hiệu hình bên thì OI // NC, \(OI = {1 \over 2}NC;O'I//QB,O'I = {1 \over 2}BQ\)

vậy từ câu b ta suy ra tam giác IOO’ vuông cân tại đỉnh I.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay