Câu 3 trang 192 SGK Đại số và Giải tích 11 Nâng cao - Dùng định nghĩa, tính đạo hàm của mỗ... DeHocTot.com

Câu 3 trang 192 SGK Đại số và Giải tích 11 Nâng cao

Toán nâng cao


Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0 (a là hằng số).

a. \(y = ax + 3\)

b. \(y = {1 \over 2}a{x^2}\)

Giải:

a. \(f(x) = ax + 3\), cho x0 một số gia Δx, ta có:

\(\eqalign{  & \Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)  \cr  &  = a\left( {{x_0} + \Delta x} \right) + 3 - \left( {a{x_0} + 3} \right) = a\Delta x  \cr  &  \Rightarrow {{\Delta y} \over {\Delta x}} = a \Rightarrow f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = a \cr} \)

b.

\(\eqalign{  & f\left( x \right) = {1 \over 2}a{x^2},\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)  \cr  &  = {1 \over 2}a{\left( {{x_0} + \Delta x} \right)^2} - {1 \over 2}ax_0^2  \cr  &  = {1 \over 2}a\Delta x\left( {2{x_0} + \Delta x} \right)  \cr  &  \Rightarrow f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}}  \cr  &  = \mathop {\lim }\limits_{\Delta x \to 0} {1 \over 2}a\left( {2{x_0} + \Delta x} \right) = a{x_0} \cr} \)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay