Câu 33 trang 118 SGK Hình học 11 Nâng cao - Cho hình hộp thoi ABCD.A’B’C’D’ có cá... DeHocTot.com

Câu 33 trang 118 SGK Hình học 11 Nâng cao

Toán nâng cao


Cho hình hộp thoi ABCD.A’B’C’D’ có các cạnh đều bằng a và \(\widehat {BAD} = \widehat {BAA'} = \widehat {DAA'} = 60^\circ .\) Tính khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’).

Giải

Từ giả thiết suy ra các tam giác A’AD, BAD, A’AB là các tam giác cân cùng có góc ở đỉnh bằng 60˚ nên chúng là các tam giác đều. Như vậy tứ diện A’ABD có các cạnh cùng bằng a hay A’ABD là tứ diện đều. Khi đó hình chiếu của A’ trên mp(ABCD) chính là trọng tâm H của tam giác đều ABD. Khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’) chính là độ dài A’H. Ta có:

\(A'{H^2} = AA{'^2} - A{H^2}\)

           \(= {a^2} - {\left( {{{a\sqrt 3 } \over 3}} \right)^2} = {a^2} - {{{a^2}} \over 3} = {{2{a^2}} \over 3}\)

Vậy \(A'H = {{a\sqrt 6 } \over 3}\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay