Câu 35 trang 118 SGK Hình học 11 Nâng cao - Cho tứ diện ABCD. Chứng minh rằng nếu AC... DeHocTot.com

Câu 35 trang 118 SGK Hình học 11 Nâng cao

Toán nâng cao


Cho tứ diện ABCD. Chứng minh rằng nếu AC = BD, AD = BC thì đường vuông góc chung của AB và CD là đường thẳng nối trung điểm của AB và CD. Điều ngược lại có đúng không ?

Giải

a. Vì AC = BD, AD = BC nên tam giác ACD bằng tam giác BDC, từ đó hai trung tuyến tương ứng AJ và BJ bằng nhau (ở đó J là trung điểm của CD). Gọi I là trung điểm của AB thì ta có JI ⊥ AB.

Tương tự như trên ta cũng có JI ⊥ CD. Vậy JI là đường vuông góc chung của AB và CD.

b. Điều ngược lại của kết luận nêu ra trong bài toán cũng đúng, tức là nếu IJ ⊥ AB, IJ ⊥ CD, I, J lần lượt là trung điểm của AB và CD thì AC = BD; AD = BC.

Thật vậy, vì IJ ⊥ AB, I là trung điểm của AB nên AJ = BJ. Mặt khác :

\(\eqalign{  & A{C^2} + A{D^2} = 2A{J^2} + {{C{D^2}} \over 2}  \cr  & B{C^2} + B{D^2} = 2B{J^2} + {{C{D^2}} \over 2} \cr} \)

Từ đó ta có : \(A{C^2} + A{D^2} = B{C^2} + B{D^2}\)   (1)

Tương tự như trên ta cũng có :

\(C{B^2} + C{A^2} = D{B^2} + D{A^2}\,\,\,\,\left( 2 \right)\)

Từ (1) và (2) ta suy ra \(A{D^2} - B{C^2} = B{C^2} - D{A^2},\) tức là DA = BC và từ (1) ta cũng có AC = BD.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay