Câu 36 trang 121 SGK Đại số và Giải tích 11 Nâng cao - ... DeHocTot.com

Câu 36 trang 121 SGK Đại số và Giải tích 11 Nâng cao

Toán nâng cao


Bài 36. Tính các tổng sau :

a. Tổng tất cả các số hạng của một cấp số nhân, biết rằng số hạng đầu bằng 18, số hạng thứ hai bằng 54 và số hạng cuối bằng 39 366;

b. Tổng tất cả các số hạng của một cấp số nhân, biết rằng số hạng đầu bằng \({1 \over {256}}\) , số hạng thứ hai bằng \({{ - 1} \over {512}}\) và số hạng cuối bằng  \({1 \over {1048576}}\)

Giải:

a. Gọi q là công bội của cấp số nhân đã cho.

Ta có:  \(q = {{{u_2}} \over {{u_1}}} = {{54} \over {18}} = 3\)

Giả sử cấp số nhân có n số hạng ta có :

\(\eqalign{
& 39366 = {u_n} = {u_1}.{q^{n - 1}} = {18.3^{n - 1}} \cr
& \Rightarrow {3^{n - 1}} = {{39366} \over {18}} = 2187 = {3^7} \Rightarrow n = 8 \cr
& \Rightarrow {S_8} = {u_1}.{{1 - {q^8}} \over {1 - q}} = 18.{{1 - {3^8}} \over {1 - 3}} = 59040 \cr} \)

b. Tương tự :

\(\eqalign{
& q = {{{u_2}} \over {{u_1}}} = - {1 \over 2} \cr
& {u_n} = {u_1}.{q^{n - 1}} \Rightarrow {1 \over {1048576}} = {1 \over {256}}.{\left( { - {1 \over 2}} \right)^{n - 1}} \cr
& \Rightarrow n = 13 \Rightarrow {S_{13}} = {1 \over {256}}.{{1 - {{\left( {{{ - 1} \over 2}} \right)}^{13}}} \over {1 - \left( { - {1 \over 2}} \right)}} = {{2731} \over {{2^{10}}}} = {{2731} \over {1048576}} \cr} \)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay