Câu 40 trang 122 SGK Đại số và Giải tích 11 Nâng cao - Bài 40. Cho cấp số cộng (un) với công sa... DeHocTot.com

Câu 40 trang 122 SGK Đại số và Giải tích 11 Nâng cao

Toán nâng cao


Bài 40. Cho cấp số cộng (un) với công sai khác 0. Biết rằng các số u1u2, u2u3 và u3u1 theo thứ tự đó lập thành một cấp số nhân với công bội q ≠ 0. Hãy tìm q.

Giải:

Vì cấp số cộng (un) có công sai khác 0 nên các số u1, u2, u3 đôi một khác nhau \(\Rightarrow {\rm{ }}{u_1}.{u_2} \ne {\rm{ }}0\) và \(q\ne1\).

Ta có: \({u_2}{u_3} = {\rm{ }}{u_1}{u_2}.q\) và \({u_3}{u_1} = {\rm{ }}{u_1}{u_2}.{q^2}\).

Từ đó suy ra \({u_3} = {u_1}q = {u_2}{q^2}\,\left( {\text{vì}\,{u_1}{u_2} \ne 0} \right).\) Do đó \({u_1} = {\rm{ }}{u_2}q\) (vì \(q \ne0\) theo giả thiết)

Vì \({u_1},{u_2},{u_3}\) là một cấp số cộng nên \({u_1} + {\rm{ }}{u_3} = {\rm{ }}2{u_2}\), suy ra :

\({u_2}\left( {q + {q^2}} \right) = 2{u_2} \Leftrightarrow {q^2} + q - 2 = 0\,\left( \text{vì }{{u_2} \ne 0} \right) \Leftrightarrow q = - 2\,\left( {\text{vì}\,q \ne 1} \right)\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay